Meng-Yuan Liu, Lu Zhang, Yu-Hang Li, Chong-Chen Wang, Peng Wang, Chen Zhao, Huifen Fu
{"title":"Defective NH2-UiO-66 for effective Pb(II) removal: Facile fabrication strategy, performances and mechanisms","authors":"Meng-Yuan Liu, Lu Zhang, Yu-Hang Li, Chong-Chen Wang, Peng Wang, Chen Zhao, Huifen Fu","doi":"10.1016/j.pnsc.2024.04.009","DOIUrl":null,"url":null,"abstract":"<div><p>Defective NH<sub>2</sub>-UiO-66 adsorbent (named as NH<sub>2</sub>-UiO-66-SD) was successfully fabricated via post-synthesis method with the aid of both sodium carbonate anhydrous (Na<sub>2</sub>CO<sub>3</sub>) and diethylenetriaminepentaacetic acid (DTPA), in which the defective structure was confirmed by various characterizations. The as-obtained defective NH<sub>2</sub>-UiO-66-SD exhibited outstanding Pb(II) sorption capacity (172.21 mg g<sup>−1</sup>) and rapid diffusion rate (29.87 mg g<sup>−1</sup> min<sup>−0.5</sup>) at room temperature with optimal pH being 5.47. The Pb(II) sorption behavior was conformed to pseudo-second-order kinetics and Langmuir model, demonstrating that the chemical sorption of the monolayer played a dominant model. As well, the thermodynamic parameters like standard Gibbs free energy change Δ<em>G</em><sup>o</sup> (−31.21 kJ mol<sup>−1</sup>), standard enthalpy change Δ<em>H</em><sup>o</sup> (12.79 kJ<sup>−1</sup> mol<sup>−1</sup>) and standard entropy change Δ<em>S</em><sup>o</sup> (146.73 J mol<sup>−1</sup> K<sup>−1</sup>) revealed that the Pb(II) sorption process of NH<sub>2</sub>-UiO-66-SD was spontaneous, endothermic and disordered. Furthermore, the NH<sub>2</sub>-UiO-66-SD exhibited desirable desorption and recirculation performances (removal efficiencies >85 % in 5 runs) with ideal stability. Moreover, the Pb(II) sorption mechanism of NH<sub>2</sub>-UiO-66-SD mainly included the electrostatic attractions and coordinative interactions. Overall, this work offered an intriguing method of fabricating defective NH<sub>2</sub>-UiO-66 adsorbent, which vastly enhanced adsorption efficiency for toxic metal ions elimination from wastewater.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 2","pages":"Pages 420-428"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124000923","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Defective NH2-UiO-66 adsorbent (named as NH2-UiO-66-SD) was successfully fabricated via post-synthesis method with the aid of both sodium carbonate anhydrous (Na2CO3) and diethylenetriaminepentaacetic acid (DTPA), in which the defective structure was confirmed by various characterizations. The as-obtained defective NH2-UiO-66-SD exhibited outstanding Pb(II) sorption capacity (172.21 mg g−1) and rapid diffusion rate (29.87 mg g−1 min−0.5) at room temperature with optimal pH being 5.47. The Pb(II) sorption behavior was conformed to pseudo-second-order kinetics and Langmuir model, demonstrating that the chemical sorption of the monolayer played a dominant model. As well, the thermodynamic parameters like standard Gibbs free energy change ΔGo (−31.21 kJ mol−1), standard enthalpy change ΔHo (12.79 kJ−1 mol−1) and standard entropy change ΔSo (146.73 J mol−1 K−1) revealed that the Pb(II) sorption process of NH2-UiO-66-SD was spontaneous, endothermic and disordered. Furthermore, the NH2-UiO-66-SD exhibited desirable desorption and recirculation performances (removal efficiencies >85 % in 5 runs) with ideal stability. Moreover, the Pb(II) sorption mechanism of NH2-UiO-66-SD mainly included the electrostatic attractions and coordinative interactions. Overall, this work offered an intriguing method of fabricating defective NH2-UiO-66 adsorbent, which vastly enhanced adsorption efficiency for toxic metal ions elimination from wastewater.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.