Data approximation in twisted shift-invariant spaces

IF 0.8 Q2 MATHEMATICS
Radha Ramakrishnan, Rabeetha Velsamy
{"title":"Data approximation in twisted shift-invariant spaces","authors":"Radha Ramakrishnan,&nbsp;Rabeetha Velsamy","doi":"10.1007/s43036-024-00336-7","DOIUrl":null,"url":null,"abstract":"<div><p>Twisted convolution is a non-standard convolution which arises while transferring the convolution of the Heisenberg group to the complex plane. Under this operation of twisted convolution, <span>\\(L^{1}(\\mathbb {R}^{2n})\\)</span> turns out to be a non-commutative Banach algebra. Hence the study of (twisted) shift-invariant spaces on <span>\\(\\mathbb {R}^{2n}\\)</span> completely differs from the perspective of the usual shift-invariant spaces on <span>\\(\\mathbb {R}^{d}\\)</span>. In this paper, by considering a set of functional data <span>\\(\\mathcal {F}=\\{f_{1},\\ldots ,f_{m}\\}\\)</span> in <span>\\(L^{2}(\\mathbb {R}^{2n})\\)</span>, we construct a finitely generated twisted shift-invariant space <span>\\(V^{t}\\)</span> on <span>\\(\\mathbb {R}^{2n}\\)</span> in such a way that the corresponding system of twisted translates of generators form a Parseval frame sequence and show that it gives the best approximation for a given data, in the sense of least square error. We also find the error of approximation of <span>\\(\\mathcal {F}\\)</span> by <span>\\(V^{t}\\)</span>. Finally, we illustrate this theory with an example.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00336-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Twisted convolution is a non-standard convolution which arises while transferring the convolution of the Heisenberg group to the complex plane. Under this operation of twisted convolution, \(L^{1}(\mathbb {R}^{2n})\) turns out to be a non-commutative Banach algebra. Hence the study of (twisted) shift-invariant spaces on \(\mathbb {R}^{2n}\) completely differs from the perspective of the usual shift-invariant spaces on \(\mathbb {R}^{d}\). In this paper, by considering a set of functional data \(\mathcal {F}=\{f_{1},\ldots ,f_{m}\}\) in \(L^{2}(\mathbb {R}^{2n})\), we construct a finitely generated twisted shift-invariant space \(V^{t}\) on \(\mathbb {R}^{2n}\) in such a way that the corresponding system of twisted translates of generators form a Parseval frame sequence and show that it gives the best approximation for a given data, in the sense of least square error. We also find the error of approximation of \(\mathcal {F}\) by \(V^{t}\). Finally, we illustrate this theory with an example.

扭曲移变空间中的数据逼近
扭曲卷积是将海森堡群的卷积转移到复平面时产生的一种非标准卷积。在这种扭曲卷积的操作下,\(L^{1}(\mathbb {R}^{2n})\) 变成了一个非交换的巴拿赫代数。因此,对 \(\mathbb {R}^{2n}\) 上(扭曲的)移位不变空间的研究完全不同于对 \(\mathbb {R}^{d}\) 上通常的移位不变空间的研究。在本文中,通过考虑 \(L^{2}(\mathbb {R}^{2n})\) 中的一组函数数据 \(\mathcal {F}=\{f_{1},\ldots ,f_{m}\})、我们在 \(\mathbb {R}^{2n}\) 上构造了一个有限生成的扭曲平移不变空间 \(V^{t}\),使得相应的生成器扭曲平移系统形成了一个帕塞瓦尔帧序列,并证明它在最小平方误差的意义上给出了给定数据的最佳近似值。我们还找到了用\(V^{t}\)逼近\(mathcal {F}\)的误差。最后,我们用一个例子来说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信