AI-enabled cardiac chambers volumetry in coronary artery calcium scans (AI-CACTM) predicts heart failure and outperforms NT-proBNP: The multi-ethnic study of Atherosclerosis

IF 5.5 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Morteza Naghavi , Anthony Reeves , Matthew Budoff , Dong Li , Kyle Atlas , Chenyu Zhang , Thomas Atlas , Sion K. Roy , Claudia I. Henschke , Nathan D. Wong , Christopher Defilippi , Daniel Levy , David F. Yankelevitz
{"title":"AI-enabled cardiac chambers volumetry in coronary artery calcium scans (AI-CACTM) predicts heart failure and outperforms NT-proBNP: The multi-ethnic study of Atherosclerosis","authors":"Morteza Naghavi ,&nbsp;Anthony Reeves ,&nbsp;Matthew Budoff ,&nbsp;Dong Li ,&nbsp;Kyle Atlas ,&nbsp;Chenyu Zhang ,&nbsp;Thomas Atlas ,&nbsp;Sion K. Roy ,&nbsp;Claudia I. Henschke ,&nbsp;Nathan D. Wong ,&nbsp;Christopher Defilippi ,&nbsp;Daniel Levy ,&nbsp;David F. Yankelevitz","doi":"10.1016/j.jcct.2024.04.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Coronary artery calcium (CAC) scans contain useful information beyond the Agatston CAC score that is not currently reported. We recently reported that artificial intelligence (AI)-enabled cardiac chambers volumetry in CAC scans (AI-CAC™) predicted incident atrial fibrillation in the Multi-Ethnic Study of Atherosclerosis (MESA). In this study, we investigated the performance of AI-CAC cardiac chambers for prediction of incident heart failure (HF).</p></div><div><h3>Methods</h3><p>We applied AI-CAC to 5750 CAC scans of asymptomatic individuals (52% female, White 40%, Black 26%, Hispanic 22% Chinese 12%) free of known cardiovascular disease at the MESA baseline examination (2000–2002). We used the 15-year outcomes data and compared the time-dependent area under the curve (AUC) of AI-CAC volumetry versus NT-proBNP, Agatston score, and 9 known clinical risk factors (age, gender, diabetes, current smoking, hypertension medication, systolic and diastolic blood pressure, LDL, HDL for predicting incident HF over 15 years.</p></div><div><h3>Results</h3><p>Over 15 years of follow-up, 256 HF events accrued. The time-dependent AUC [95% CI] at 15 years for predicting HF with AI-CAC all chambers volumetry (0.86 [0.82,0.91]) was significantly higher than NT-proBNP (0.74 [0.69, 0.77]) and Agatston score (0.71 [0.68, 0.78]) (p ​&lt; ​0.0001), and comparable to clinical risk factors (0.85, p ​= ​0.4141). Category-free Net Reclassification Index (NRI) [95% CI] adding AI-CAC LV significantly improved on clinical risk factors (0.32 [0.16,0.41]), NT-proBNP (0.46 [0.33,0.58]), and Agatston score (0.71 [0.57,0.81]) for HF prediction at 15 years (p ​&lt; ​0.0001).</p></div><div><h3>Conclusion</h3><p>AI-CAC volumetry significantly outperformed NT-proBNP and the Agatston CAC score, and significantly improved the AUC and category-free NRI of clinical risk factors for incident HF prediction.</p></div>","PeriodicalId":49039,"journal":{"name":"Journal of Cardiovascular Computed Tomography","volume":"18 4","pages":"Pages 392-400"},"PeriodicalIF":5.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1934592524000807/pdfft?md5=7784c5c7772ee47eae4f7a7cc94434b0&pid=1-s2.0-S1934592524000807-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Computed Tomography","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1934592524000807","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Coronary artery calcium (CAC) scans contain useful information beyond the Agatston CAC score that is not currently reported. We recently reported that artificial intelligence (AI)-enabled cardiac chambers volumetry in CAC scans (AI-CAC™) predicted incident atrial fibrillation in the Multi-Ethnic Study of Atherosclerosis (MESA). In this study, we investigated the performance of AI-CAC cardiac chambers for prediction of incident heart failure (HF).

Methods

We applied AI-CAC to 5750 CAC scans of asymptomatic individuals (52% female, White 40%, Black 26%, Hispanic 22% Chinese 12%) free of known cardiovascular disease at the MESA baseline examination (2000–2002). We used the 15-year outcomes data and compared the time-dependent area under the curve (AUC) of AI-CAC volumetry versus NT-proBNP, Agatston score, and 9 known clinical risk factors (age, gender, diabetes, current smoking, hypertension medication, systolic and diastolic blood pressure, LDL, HDL for predicting incident HF over 15 years.

Results

Over 15 years of follow-up, 256 HF events accrued. The time-dependent AUC [95% CI] at 15 years for predicting HF with AI-CAC all chambers volumetry (0.86 [0.82,0.91]) was significantly higher than NT-proBNP (0.74 [0.69, 0.77]) and Agatston score (0.71 [0.68, 0.78]) (p ​< ​0.0001), and comparable to clinical risk factors (0.85, p ​= ​0.4141). Category-free Net Reclassification Index (NRI) [95% CI] adding AI-CAC LV significantly improved on clinical risk factors (0.32 [0.16,0.41]), NT-proBNP (0.46 [0.33,0.58]), and Agatston score (0.71 [0.57,0.81]) for HF prediction at 15 years (p ​< ​0.0001).

Conclusion

AI-CAC volumetry significantly outperformed NT-proBNP and the Agatston CAC score, and significantly improved the AUC and category-free NRI of clinical risk factors for incident HF prediction.

冠状动脉钙扫描中的人工智能心腔容积测量(AI-CACTM)可预测心力衰竭并优于 NT-proBNP:多种族动脉粥样硬化研究。
导言冠状动脉钙化(CAC)扫描除了包含阿加斯顿 CAC 评分外,还包含目前尚未报道的有用信息。我们最近报道了人工智能(AI)支持的 CAC 扫描心腔容积测量(AI-CAC™)可预测多种族动脉粥样硬化研究(MESA)中心房颤动的发生。在这项研究中,我们调查了 AI-CAC 心腔预测心力衰竭(HF)事件的性能。方法我们将 AI-CAC 应用于 5750 份 CAC 扫描,这些扫描对象在 MESA 基线检查(2000-2002 年)时无症状且无已知心血管疾病(女性占 52%,白人占 40%,黑人占 26%,西班牙裔占 22%,华人占 12%)。我们利用 15 年的结果数据,比较了 AI-CAC 容积测量与 NT-proBNP、Agatston 评分和 9 个已知临床风险因素(年龄、性别、糖尿病、目前吸烟、高血压药物、收缩压和舒张压、低密度脂蛋白、高密度脂蛋白)的随时间变化的曲线下面积(AUC),以预测 15 年内发生的高血压事件。15 年后,用 AI-CAC 全腔容积测量法预测心房颤动的时间依赖性 AUC [95% CI](0.86 [0.82,0.91])显著高于 NT-proBNP (0.74 [0.69, 0.77])和 Agatston 评分 (0.71 [0.68, 0.78])(p < 0.0001),与临床风险因素(0.85,p = 0.4141)相当。加入 AI-CAC LV 的无类别净重分类指数(NRI)[95% CI]在预测 15 年后的 HF 方面明显优于临床危险因素(0.32 [0.16,0.41])、NT-proBNP(0.46 [0.33,0.58])和 Agatston 评分(0.71 [0.57,0.81])(p < 0.0001)。结论AI-CAC容积测量法的效果明显优于NT-proBNP和Agatston CAC评分,并显著提高了临床危险因素对HF事件预测的AUC和无类别NRI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cardiovascular Computed Tomography
Journal of Cardiovascular Computed Tomography CARDIAC & CARDIOVASCULAR SYSTEMS-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.50
自引率
14.80%
发文量
212
审稿时长
40 days
期刊介绍: The Journal of Cardiovascular Computed Tomography is a unique peer-review journal that integrates the entire international cardiovascular CT community including cardiologist and radiologists, from basic to clinical academic researchers, to private practitioners, engineers, allied professionals, industry, and trainees, all of whom are vital and interdependent members of our cardiovascular imaging community across the world. The goal of the journal is to advance the field of cardiovascular CT as the leading cardiovascular CT journal, attracting seminal work in the field with rapid and timely dissemination in electronic and print media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信