Jing Xu , Xulong Yuan , Yujie Zhao , Shaoqi Rui , Qingling Jia , Han Li , Shun Lu , Bing Li , Yongxing Zhang , Xuebin Zhu
{"title":"One-step hydrothermal synthesis of few-layered metallic phase MoS2 for high-performance supercapacitors","authors":"Jing Xu , Xulong Yuan , Yujie Zhao , Shaoqi Rui , Qingling Jia , Han Li , Shun Lu , Bing Li , Yongxing Zhang , Xuebin Zhu","doi":"10.1016/j.pnsc.2024.04.011","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, molybdenum disulfide (MoS<sub>2</sub>) has gained significant attention in the scientific community. Few-layered MoS<sub>2</sub> demonstrates unique properties and potential applications. However, the synthesis of few-layered and high-purity 1T-MoS<sub>2</sub> is still a challenge. In this study, we successfully employed a hydrothermal method to synthesize few-layered and high-purity 1T-MoS<sub>2</sub>. The purity of the material is controlled by a combination of sodium borohydride and ethanol. Notably, the few-layered 1T-MoS<sub>2</sub> exhibits exceptional performance as a supercapacitor, including the high specific capacitance (250.3 F g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup>) and excellent long-trem cycling stability (90.7 % after 5000 cycles). Meanwhile, the asymmetric device assembled by 6-FL-1T-MoS<sub>2</sub> and active carbon on carbon cloths exhibits excellent flexibility and high energy and power density (23.1 μWh cm<sup>−2</sup> at 600 μW cm<sup>−2</sup>, 55 μWh cm<sup>−2</sup> at 12000 μW cm<sup>−2</sup>). This work provides valuable insights into the synthesis of few-layered and high-purity 1T-MoS<sub>2</sub>, opening up new avenues for further research and applications.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 2","pages":"Pages 429-436"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001023","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, molybdenum disulfide (MoS2) has gained significant attention in the scientific community. Few-layered MoS2 demonstrates unique properties and potential applications. However, the synthesis of few-layered and high-purity 1T-MoS2 is still a challenge. In this study, we successfully employed a hydrothermal method to synthesize few-layered and high-purity 1T-MoS2. The purity of the material is controlled by a combination of sodium borohydride and ethanol. Notably, the few-layered 1T-MoS2 exhibits exceptional performance as a supercapacitor, including the high specific capacitance (250.3 F g−1 at a current density of 1 A g−1) and excellent long-trem cycling stability (90.7 % after 5000 cycles). Meanwhile, the asymmetric device assembled by 6-FL-1T-MoS2 and active carbon on carbon cloths exhibits excellent flexibility and high energy and power density (23.1 μWh cm−2 at 600 μW cm−2, 55 μWh cm−2 at 12000 μW cm−2). This work provides valuable insights into the synthesis of few-layered and high-purity 1T-MoS2, opening up new avenues for further research and applications.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.