Devika Varma , Marcel T.J. van der Meer , Gert-Jan Reichart , Stefan Schouten
{"title":"Impact of water depth on the distributions and proxies of isoprenoidal hydroxylated GDGTs in the Mediterranean Sea and the Red Sea","authors":"Devika Varma , Marcel T.J. van der Meer , Gert-Jan Reichart , Stefan Schouten","doi":"10.1016/j.orggeochem.2024.104780","DOIUrl":null,"url":null,"abstract":"<div><p>Hydroxylated Isoprenoidal Glycerol Dialkyl Glycerol Tetraethers (OH-isoGDGTs) have recently been utilized as paleothermometers in the marine environment. However, their ability to reconstruct temperature in the Mediterranean and Red Sea has not been adequately investigated. Previous research has shown that archaeal communities inhabiting different water depths in these basins exert a substantial influence on the regular isoGDGT distributions and associated proxies such as the <span><math><msub><mrow><mi>T</mi><mi>E</mi><mi>X</mi></mrow><mn>86</mn></msub></math></span>. However, the impact of these archaea on OH-isoGDGTs and their corresponding proxies remains unclear. In this study, we examined the distribution of OH-isoGDGTs and their associated proxies (<span><math><mrow><mo>%</mo><mi>O</mi><mi>H</mi></mrow></math></span>, RI-OH, RI-OH′ and <span><math><msubsup><mrow><mi>T</mi><mi>E</mi><mi>X</mi></mrow><mrow><mn>86</mn></mrow><mrow><mi>O</mi><mi>H</mi></mrow></msubsup></math></span>) in surface sediments of the Mediterranean and the Red Sea. We observe strong correlations between the fractional abundances of OH-isoGDGTs, relative to all isoGDGTs and OH-isoGDGTs, and water depth which suggests that deep-water archaeal communities have a lower OH-isoGDGT abundance compared to the shallow communities. As a result, <span><math><mrow><mo>%</mo><mi>O</mi><mi>H</mi></mrow></math></span> and <span><math><msubsup><mrow><mi>T</mi><mi>E</mi><mi>X</mi></mrow><mrow><mn>86</mn></mrow><mrow><mi>O</mi><mi>H</mi></mrow></msubsup></math></span> are strongly correlated with water depth, particularly at depths <500 m in the Mediterranean Sea. Interestingly, RI-OH and RI-OH′ show no correlation with water depth in the Mediterranean Sea. Instead, they correlate more strongly with satellite-derived sea surface temperature compared to other isoGDGT-based proxies, indicating their potential as paleothermometers. Finally, unlike <span><math><msub><mrow><mi>T</mi><mi>E</mi><mi>X</mi></mrow><mn>86</mn></msub></math></span> and <span><math><msubsup><mrow><mi>T</mi><mi>E</mi><mi>X</mi></mrow><mrow><mn>86</mn></mrow><mrow><mi>O</mi><mi>H</mi></mrow></msubsup></math></span>, the <span><math><mrow><mo>%</mo><mi>O</mi><mi>H</mi></mrow></math></span>, RI-OH and RI-OH′ do not exhibit distinct 'Red Sea cluster' and display comparable values to sediments from other tropical oceans. Further research on sedimentary OH-isoGDGT distributions with broader geographical coverage within these basins and enrichment cultures of deep-water archaea are needed to confirm these observations.</p></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"194 ","pages":"Article 104780"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0146638024000457/pdfft?md5=ffd1797c16877ffb7287d55cfaa65295&pid=1-s2.0-S0146638024000457-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024000457","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydroxylated Isoprenoidal Glycerol Dialkyl Glycerol Tetraethers (OH-isoGDGTs) have recently been utilized as paleothermometers in the marine environment. However, their ability to reconstruct temperature in the Mediterranean and Red Sea has not been adequately investigated. Previous research has shown that archaeal communities inhabiting different water depths in these basins exert a substantial influence on the regular isoGDGT distributions and associated proxies such as the . However, the impact of these archaea on OH-isoGDGTs and their corresponding proxies remains unclear. In this study, we examined the distribution of OH-isoGDGTs and their associated proxies (, RI-OH, RI-OH′ and ) in surface sediments of the Mediterranean and the Red Sea. We observe strong correlations between the fractional abundances of OH-isoGDGTs, relative to all isoGDGTs and OH-isoGDGTs, and water depth which suggests that deep-water archaeal communities have a lower OH-isoGDGT abundance compared to the shallow communities. As a result, and are strongly correlated with water depth, particularly at depths <500 m in the Mediterranean Sea. Interestingly, RI-OH and RI-OH′ show no correlation with water depth in the Mediterranean Sea. Instead, they correlate more strongly with satellite-derived sea surface temperature compared to other isoGDGT-based proxies, indicating their potential as paleothermometers. Finally, unlike and , the , RI-OH and RI-OH′ do not exhibit distinct 'Red Sea cluster' and display comparable values to sediments from other tropical oceans. Further research on sedimentary OH-isoGDGT distributions with broader geographical coverage within these basins and enrichment cultures of deep-water archaea are needed to confirm these observations.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.