Comparing thermoluminescence data on lanthanides in 36 compounds with predictions from vacuum referred binding energy diagrams

Q2 Engineering
Pieter Dorenbos
{"title":"Comparing thermoluminescence data on lanthanides in 36 compounds with predictions from vacuum referred binding energy diagrams","authors":"Pieter Dorenbos","doi":"10.1016/j.omx.2024.100316","DOIUrl":null,"url":null,"abstract":"<div><p>Thermoluminescence (TL) often involves the liberation of a charge carrier (an electron or a hole) from a charge carrier trapping centre into the conduction band (CB) or the valence band (VB) with subsequent recombination with a counter charge carrier at a luminescence centre. TL glow peak analysis can provide the energy <span><math><mrow><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span> needed to liberate such charge carrier which then defines the location of the charge transition levels (CTL) of the carrier trapping centres below the CB-bottom or above the VB-top. The temperature at the maximum of the TL glow peak changes 3–4 K per 0.01 eV change in <span><math><mrow><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span> thus providing an extremely sensitive probe of energy changes in CTLs. This work collects and reviews data on glow peaks due to electron or hole release from lanthanide dopants in 36 different inorganic compounds. To compare results from different literature sources, data were always re-analysed using the same method that is solely based on the temperature at the maximum of the glow peak. The changes in <span><math><mrow><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span> along the lanthanides series provides insight at the sub 0.1 eV level on the changes in CTL energies. We will use a compound-dependent parameter to account for the nephelauxetic effect and a compound dependent parameter to account for lattice relaxation around the lanthanide. Together with information from lanthanide luminescence spectroscopy, the vacuum referred binding energy (VRBE) diagram will be constructed for each compound. The lanthanide electron or hole trap depth read from the VRBE scheme will be compared with that derived from the TL glow peak. Surprisingly good agreement will be demonstrated.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"22 ","pages":"Article 100316"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000287/pdfft?md5=aab3062c038972ade7b03bbc63e040c5&pid=1-s2.0-S2590147824000287-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147824000287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoluminescence (TL) often involves the liberation of a charge carrier (an electron or a hole) from a charge carrier trapping centre into the conduction band (CB) or the valence band (VB) with subsequent recombination with a counter charge carrier at a luminescence centre. TL glow peak analysis can provide the energy ΔEt needed to liberate such charge carrier which then defines the location of the charge transition levels (CTL) of the carrier trapping centres below the CB-bottom or above the VB-top. The temperature at the maximum of the TL glow peak changes 3–4 K per 0.01 eV change in ΔEt thus providing an extremely sensitive probe of energy changes in CTLs. This work collects and reviews data on glow peaks due to electron or hole release from lanthanide dopants in 36 different inorganic compounds. To compare results from different literature sources, data were always re-analysed using the same method that is solely based on the temperature at the maximum of the glow peak. The changes in ΔEt along the lanthanides series provides insight at the sub 0.1 eV level on the changes in CTL energies. We will use a compound-dependent parameter to account for the nephelauxetic effect and a compound dependent parameter to account for lattice relaxation around the lanthanide. Together with information from lanthanide luminescence spectroscopy, the vacuum referred binding energy (VRBE) diagram will be constructed for each compound. The lanthanide electron or hole trap depth read from the VRBE scheme will be compared with that derived from the TL glow peak. Surprisingly good agreement will be demonstrated.

将 36 种化合物中镧系元素的热释光数据与真空结合能图的预测结果进行比较
热致发光(TL)通常涉及电荷载流子(电子或空穴)从电荷载流子捕获中心释放到导带(CB)或价带(VB),随后在发光中心与反电荷载流子重组。TL 辉光峰分析可提供释放此类电荷载流子所需的能量 ΔEt,从而确定低于 CB 底部或高于 VB 顶部的载流子捕获中心的电荷转移层 (CTL) 位置。ΔEt 每变化 0.01 eV,TL 辉光峰值最大处的温度就会变化 3-4 K,从而为 CTL 的能量变化提供了一个极其灵敏的探针。本研究收集并回顾了 36 种不同无机化合物中镧系元素掺杂剂释放电子或空穴所产生的辉光峰数据。为了比较不同文献来源的结果,始终使用相同的方法对数据进行重新分析,该方法完全基于辉光峰最大值时的温度。根据镧系元素系列中 ΔEt 的变化,我们可以在 0.1 eV 以下的水平上了解 CTL 能量的变化。我们将使用一个与化合物相关的参数来解释霞光效应,并使用一个与化合物相关的参数来解释镧系元素周围的晶格弛豫。结合镧系元素发光光谱的信息,我们将为每种化合物构建真空参考结合能(VRBE)图。从 VRBE 方案读取的镧系元素电子或空穴陷阱深度将与从 TL 辉光峰得出的深度进行比较。结果将显示出令人惊讶的良好一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Materials: X
Optical Materials: X Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
73
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信