D. Bhargavi, Anil Kumar, P. Anantha Lakshmi Narayana, Nitish Gupta
{"title":"An Analytical Study of Fluid Flow Through a Porous Filled Channel with Permeable Wall: Suction/Injection Wall Conditions","authors":"D. Bhargavi, Anil Kumar, P. Anantha Lakshmi Narayana, Nitish Gupta","doi":"10.1166/jon.2024.2151","DOIUrl":null,"url":null,"abstract":"To depict fluid movement in a channel with a rectangle-shaped cross-section and porous walls, the twodimensional Darcy Brinkman equation of motion with uniform suction and injection is analytically solved using the perturbation method. The analytical expressions for non-dimensional\n axial velocity, normal velocity, skin friction coefficient and pressure drop are obtained using the perturbation method at a low Reynolds number. Graphical analysis has been done for the derived quantities for different Darcy and Reynolds numbers. At higher Reynolds numbers, the emergence\n of the velocity overshoots and the presence of an unfavourable pressure gradient zone are significantly less noticeable. The streamlines follow the same pattern since the flow is steady. When the Darcy number is large, the non-dimensional stream function expression reduces to the stream function\n expression available in the literature. Non-dimensional pressure drop increases up to a specific entry length. The skin friction coefficient decreases as the Reynolds number increases. Acceleration of the fluid in the porous region leads to lesser skin friction; hence, pressure drop rises.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To depict fluid movement in a channel with a rectangle-shaped cross-section and porous walls, the twodimensional Darcy Brinkman equation of motion with uniform suction and injection is analytically solved using the perturbation method. The analytical expressions for non-dimensional
axial velocity, normal velocity, skin friction coefficient and pressure drop are obtained using the perturbation method at a low Reynolds number. Graphical analysis has been done for the derived quantities for different Darcy and Reynolds numbers. At higher Reynolds numbers, the emergence
of the velocity overshoots and the presence of an unfavourable pressure gradient zone are significantly less noticeable. The streamlines follow the same pattern since the flow is steady. When the Darcy number is large, the non-dimensional stream function expression reduces to the stream function
expression available in the literature. Non-dimensional pressure drop increases up to a specific entry length. The skin friction coefficient decreases as the Reynolds number increases. Acceleration of the fluid in the porous region leads to lesser skin friction; hence, pressure drop rises.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.