Quasi-likelihood and Quasi-Bayes Estimation in Noncommutative Fractional SPDEs

Jaya P. N. Bishwal
{"title":"Quasi-likelihood and Quasi-Bayes Estimation in Noncommutative Fractional SPDEs","authors":"Jaya P. N. Bishwal","doi":"10.28924/ada/stat.4.6","DOIUrl":null,"url":null,"abstract":"We study the quasi-likelihood and quasi Bayes estimator of the drift parameter in the stochastic partial differential equations when the process is observed at the arrival times of a Poisson process. Unlike the previous work, no commutativity condition is assumed between the operators in the equation. We use a two stage estimation procedure. We first estimate the intensity of the Poisson process. Then we plug-in this estimate in the quasi-likelihood to estimate the drift parameter. Under certain non-degeneracy assumptions on the operators, we obtain the consistency and the asymptotic normality of the estimators.","PeriodicalId":153849,"journal":{"name":"European Journal of Statistics","volume":"333 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/ada/stat.4.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the quasi-likelihood and quasi Bayes estimator of the drift parameter in the stochastic partial differential equations when the process is observed at the arrival times of a Poisson process. Unlike the previous work, no commutativity condition is assumed between the operators in the equation. We use a two stage estimation procedure. We first estimate the intensity of the Poisson process. Then we plug-in this estimate in the quasi-likelihood to estimate the drift parameter. Under certain non-degeneracy assumptions on the operators, we obtain the consistency and the asymptotic normality of the estimators.
非交换分式 SPDE 中的准可能性和准贝叶斯估计
我们研究了在泊松过程的到达时间观测过程时,随机偏微分方程中漂移参数的准似然估计和准贝叶斯估计。与之前的研究不同,我们没有假定方程中的算子之间存在换元条件。我们采用两阶段估计程序。我们首先估计泊松过程的强度。然后,我们将这一估计值插入准概率中,以估计漂移参数。在算子的某些非退化假设下,我们得到了估计值的一致性和渐近正态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信