Lin Jiang , Anthony Dowling, Yu Liu, Ming-C. Cheng
{"title":"Ensemble learning model for effective thermal simulation of multi-core CPUs","authors":"Lin Jiang , Anthony Dowling, Yu Liu, Ming-C. Cheng","doi":"10.1016/j.vlsi.2024.102201","DOIUrl":null,"url":null,"abstract":"<div><p>An ensemble data-learning approach based on proper orthogonal decomposition (POD) and Galerkin projection (EnPOD-GP) is proposed for thermal simulations of multi-core CPUs to improve training efficiency and the model accuracy for a previously developed global POD-GP method (GPOD-GP). GPOD-GP generates one set of basis functions (or POD modes) to account for thermal behavior in response to variations in dynamic power maps (PMs) in the entire chip, which is computationally intensive to cover possible variations of all power sources. EnPOD-GP however acquires multiple sets of POD modes to significantly improve training efficiency and effectiveness, and its simulation accuracy is independent of any dynamic PM. Compared to finite element simulation, both GPOD-GP and EnPOD-GP offer a computational speedup over 3 orders of magnitude. For a processor with a small number of cores, GPOD-GP provides a more efficient approach. When high accuracy is desired and/or a processor with more cores is involved, EnPOD-GP is more preferable in terms of training effort and simulation accuracy and efficiency. Additionally, the error resulting from EnPOD-GP can be precisely predicted for any random spatiotemporal power excitation.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"97 ","pages":"Article 102201"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167926024000658/pdfft?md5=1bfea626d6bed7a5cf9433aa649eaf0a&pid=1-s2.0-S0167926024000658-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024000658","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
An ensemble data-learning approach based on proper orthogonal decomposition (POD) and Galerkin projection (EnPOD-GP) is proposed for thermal simulations of multi-core CPUs to improve training efficiency and the model accuracy for a previously developed global POD-GP method (GPOD-GP). GPOD-GP generates one set of basis functions (or POD modes) to account for thermal behavior in response to variations in dynamic power maps (PMs) in the entire chip, which is computationally intensive to cover possible variations of all power sources. EnPOD-GP however acquires multiple sets of POD modes to significantly improve training efficiency and effectiveness, and its simulation accuracy is independent of any dynamic PM. Compared to finite element simulation, both GPOD-GP and EnPOD-GP offer a computational speedup over 3 orders of magnitude. For a processor with a small number of cores, GPOD-GP provides a more efficient approach. When high accuracy is desired and/or a processor with more cores is involved, EnPOD-GP is more preferable in terms of training effort and simulation accuracy and efficiency. Additionally, the error resulting from EnPOD-GP can be precisely predicted for any random spatiotemporal power excitation.
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.