Modification of Natural Zeolite from Klaten, Indonesia Using Ammonium Chloride by Ion-Exchange and Its Application as Catalyst in Ethanol Dehydration to Produce Diethyl Ether
{"title":"Modification of Natural Zeolite from Klaten, Indonesia Using Ammonium Chloride by Ion-Exchange and Its Application as Catalyst in Ethanol Dehydration to Produce Diethyl Ether","authors":"Zaira Adila, W. Trisunaryanti, T. Triyono","doi":"10.22146/ijc.90279","DOIUrl":null,"url":null,"abstract":"Modification of a natural zeolite from Klaten, Indonesia, as a catalyst in the dehydration of ethanol to produce diethyl ether (DEE) has been conducted. Raw Klaten natural zeolite (ZA) was modified using 1 and 2 M of an ammonium chloride solution for 24 h while stirring for 18 h, then calcined at 500 °C for 5 h under N2 gas flow produced HZA1 and HZA2 catalyst, respectively. The catalysts were characterized using XRD, BET surface area, SEM-EDX, XRF, FTIR and gravimetric acidity test using ammonia-based vapor. The dehydration process was conducted under variations of temperature (200, 250, and 300 °C) and catalyst mass of 0.1, 0.2, and 0.4 g for 20 mL of 96% ethanol. The HZA1 catalyst produced the highest yield of DEE (2.41%) at 250 °C and 0.1 g catalyst. This catalyst showed needle-like of 66.22 nm crystal size, consisting of 32.57% mordenite, the highest surface area (48.32 m2/g), crystallinity (32.93%) and Brønsted acid sites (2.75 mmol/g), the lowest pore diameter (1.77 nm) and Si/Al mol ratio (4.03). The HZA1 catalyst can be used repetitively and produced DEE yield at the second and third runs (2.40 and 2.61%).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"375 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.90279","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Modification of a natural zeolite from Klaten, Indonesia, as a catalyst in the dehydration of ethanol to produce diethyl ether (DEE) has been conducted. Raw Klaten natural zeolite (ZA) was modified using 1 and 2 M of an ammonium chloride solution for 24 h while stirring for 18 h, then calcined at 500 °C for 5 h under N2 gas flow produced HZA1 and HZA2 catalyst, respectively. The catalysts were characterized using XRD, BET surface area, SEM-EDX, XRF, FTIR and gravimetric acidity test using ammonia-based vapor. The dehydration process was conducted under variations of temperature (200, 250, and 300 °C) and catalyst mass of 0.1, 0.2, and 0.4 g for 20 mL of 96% ethanol. The HZA1 catalyst produced the highest yield of DEE (2.41%) at 250 °C and 0.1 g catalyst. This catalyst showed needle-like of 66.22 nm crystal size, consisting of 32.57% mordenite, the highest surface area (48.32 m2/g), crystallinity (32.93%) and Brønsted acid sites (2.75 mmol/g), the lowest pore diameter (1.77 nm) and Si/Al mol ratio (4.03). The HZA1 catalyst can be used repetitively and produced DEE yield at the second and third runs (2.40 and 2.61%).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.