A comprehensive investigation on alleviating oxidative stress and inflammation in hyperglycaemic conditions through in vitro experiments and computational analysis
IF 4.4 2区 生物学Q1 Agricultural and Biological Sciences
Shehwaz Anwar , Ravindra Raut , Fahad A. Alhumaydhi
{"title":"A comprehensive investigation on alleviating oxidative stress and inflammation in hyperglycaemic conditions through in vitro experiments and computational analysis","authors":"Shehwaz Anwar , Ravindra Raut , Fahad A. Alhumaydhi","doi":"10.1016/j.sjbs.2024.104003","DOIUrl":null,"url":null,"abstract":"<div><p>Protein glycation, hyper-inflammatory reactions, and oxidative stress play a crucial role in the pathophysiology of numerous diseases. The current work evaluated the protective ability of ethyl alcohol extract of leaves from holy basil (<em>Ocimum sanctum</em> Linn) against inflammation, oxidative stress, glycation and advanced glycation endproducts formation.<!--> <!-->Various <em>in vitro</em> assays assessed prementioned properties of holy basil. In addition, molecular docking was conducted. The highest hydrogen peroxide reduction activity (72.7 %) and maximum percentage of DPPH scavenging (71.3 %) depicted its vigorous antioxidant abilities. Furthermore, it showed the most excellent protection against proteinase activity (67.247 %), prevention of denaturation of egg albumin (65.29 %), and BSA (bovine serum albumin) (68.87 %) with 600 µg/ml. Percent aggregation index (57.528 %), browning intensity (56.61 %), and amyloid structure (57.0 %) were all reduced significantly using 600 μg/ml of extract. Additionally, the antimicrobial potential was also confirmed. According to a molecular docking study, active leaf extract ingredients were found to bind with superoxide dismutase, catalase, and carbonic anhydrase. As a conclusion, <em>O. sanctum</em> has a variety of health-promoting properties that may reduce the severity of many diseases in diabetic patients. However, in order to ascertain the mechanisms of action of the components of its leaves in disease prevention, more thorough research based on pharmacological aspects is needed.</p></div>","PeriodicalId":21540,"journal":{"name":"Saudi Journal of Biological Sciences","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319562X24000810/pdfft?md5=39e764e5650318d15f11548e71abb7cd&pid=1-s2.0-S1319562X24000810-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319562X24000810","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Protein glycation, hyper-inflammatory reactions, and oxidative stress play a crucial role in the pathophysiology of numerous diseases. The current work evaluated the protective ability of ethyl alcohol extract of leaves from holy basil (Ocimum sanctum Linn) against inflammation, oxidative stress, glycation and advanced glycation endproducts formation. Various in vitro assays assessed prementioned properties of holy basil. In addition, molecular docking was conducted. The highest hydrogen peroxide reduction activity (72.7 %) and maximum percentage of DPPH scavenging (71.3 %) depicted its vigorous antioxidant abilities. Furthermore, it showed the most excellent protection against proteinase activity (67.247 %), prevention of denaturation of egg albumin (65.29 %), and BSA (bovine serum albumin) (68.87 %) with 600 µg/ml. Percent aggregation index (57.528 %), browning intensity (56.61 %), and amyloid structure (57.0 %) were all reduced significantly using 600 μg/ml of extract. Additionally, the antimicrobial potential was also confirmed. According to a molecular docking study, active leaf extract ingredients were found to bind with superoxide dismutase, catalase, and carbonic anhydrase. As a conclusion, O. sanctum has a variety of health-promoting properties that may reduce the severity of many diseases in diabetic patients. However, in order to ascertain the mechanisms of action of the components of its leaves in disease prevention, more thorough research based on pharmacological aspects is needed.
期刊介绍:
Saudi Journal of Biological Sciences is an English language, peer-reviewed scholarly publication in the area of biological sciences. Saudi Journal of Biological Sciences publishes original papers, reviews and short communications on, but not limited to:
• Biology, Ecology and Ecosystems, Environmental and Biodiversity
• Conservation
• Microbiology
• Physiology
• Genetics and Epidemiology
Saudi Journal of Biological Sciences is the official publication of the Saudi Society for Biological Sciences and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.