Jima Seyoum Abera, Mitiku Daba Firdi, Ebba Hindebu Rikitu
{"title":"Three-Dimensional Magnetohydrodynamics Casson Fluid Flow Past a Non-Linearly Stretching Surface with Nanoparticles","authors":"Jima Seyoum Abera, Mitiku Daba Firdi, Ebba Hindebu Rikitu","doi":"10.1166/jon.2024.2153","DOIUrl":null,"url":null,"abstract":"This article, the three-dimensional flow of a casson fluid over a non-linearly stretching surface by bilateral directions along the xy-plane under boundary layer approximation is estimated. We have considered the the effect of magnetohydrodynamics (MHD) and the condition of natural\n convective over the stretching surface. Moreover, The influences of boundary condition at temperatures and nanoparticles in motion are thermophoresis, Brownian motion and radiation are considered. The method of solved equation by using the appropriate transformations, the system non-linear\n partial differential equations along with the boundary conditions is transformed into coupled non-linear ordinary differential equations. The numerical solutions of the mathematics formulated equations are solved by using a Runge–Kutta method with a shooting technique. The new obtained\n results are checked with previously published work for special cases of the problem in order to access the accuracy of numerical method and the convergency between are found to be in excellent agreement through ratified by tabular results. The emerging parameters behavior are discussed graphically\n in the form of velocity, temperature and fraction of nanoparticles. The number of Nusselt and number of Sherwood are calculated by numerical computations solution are expressed by tabular results. We have observed that the assignment denoted by parameters characteristics have significant effect\n on flow, transfer of heat and mass. Generally, The results are expressed by graphically, in tabular form and the physical aspects of the problem are determined.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"436 ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This article, the three-dimensional flow of a casson fluid over a non-linearly stretching surface by bilateral directions along the xy-plane under boundary layer approximation is estimated. We have considered the the effect of magnetohydrodynamics (MHD) and the condition of natural
convective over the stretching surface. Moreover, The influences of boundary condition at temperatures and nanoparticles in motion are thermophoresis, Brownian motion and radiation are considered. The method of solved equation by using the appropriate transformations, the system non-linear
partial differential equations along with the boundary conditions is transformed into coupled non-linear ordinary differential equations. The numerical solutions of the mathematics formulated equations are solved by using a Runge–Kutta method with a shooting technique. The new obtained
results are checked with previously published work for special cases of the problem in order to access the accuracy of numerical method and the convergency between are found to be in excellent agreement through ratified by tabular results. The emerging parameters behavior are discussed graphically
in the form of velocity, temperature and fraction of nanoparticles. The number of Nusselt and number of Sherwood are calculated by numerical computations solution are expressed by tabular results. We have observed that the assignment denoted by parameters characteristics have significant effect
on flow, transfer of heat and mass. Generally, The results are expressed by graphically, in tabular form and the physical aspects of the problem are determined.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.