Innovative pilot-scale process for sustainable rare earth oxide production from coal byproducts: A comprehensive environmental impact assessment

IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED
Mohsen Rabbani , Joshua Werner , Ario Fahimi , Ehsan Vahidi
{"title":"Innovative pilot-scale process for sustainable rare earth oxide production from coal byproducts: A comprehensive environmental impact assessment","authors":"Mohsen Rabbani ,&nbsp;Joshua Werner ,&nbsp;Ario Fahimi ,&nbsp;Ehsan Vahidi","doi":"10.1016/j.jre.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><div>This study developed a pilot-scale process feeding with two different materials resulting from a column leaching process and acid mine drainage (AMD) streams to recover rare earth elements (REEs). A life cycle assessment (LCA) study was done to evaluate the environmental impacts of rare earth production from deleterious material in the form of highly contaminated leachate (HCL) and low-contaminated leachate (LCL). The results indicate that the main contributors to environmental categories that produce RE-hydroxide stages are NaOH and electricity. Also, oxalic acid, Na<sub>2</sub>CO<sub>3</sub>, and hydrochloric acid significantly contribute to the production stage of individual rare earth oxides (REOs), including solvent extraction (SX) and precipitation steps. The HCL route has higher environmental impacts than LCL due to higher chemical/energy and H<sub>2</sub>SO<sub>4</sub> usage, so 468 and 292 kg of carbon dioxide are generated to produce 1 t of individual REOs from HCL and LCL routes, respectively. Moreover, the carbon dioxide emitted from the process, including the RE-hydroxide production, SX, and REOs production, is less than 10 t CO<sub>2</sub>. A sensitivity analysis was also performed to assess the changeability of the environmental footprints of the main inputs in the SX process, as the main stage has a higher contribution to the whole process. This LCA study is the first step toward understanding the environmental influence of new processing methods to produce REEs from coal by-products through a developed pilot-scale process.</div></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"43 2","pages":"Pages 397-404"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100207212400108X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed a pilot-scale process feeding with two different materials resulting from a column leaching process and acid mine drainage (AMD) streams to recover rare earth elements (REEs). A life cycle assessment (LCA) study was done to evaluate the environmental impacts of rare earth production from deleterious material in the form of highly contaminated leachate (HCL) and low-contaminated leachate (LCL). The results indicate that the main contributors to environmental categories that produce RE-hydroxide stages are NaOH and electricity. Also, oxalic acid, Na2CO3, and hydrochloric acid significantly contribute to the production stage of individual rare earth oxides (REOs), including solvent extraction (SX) and precipitation steps. The HCL route has higher environmental impacts than LCL due to higher chemical/energy and H2SO4 usage, so 468 and 292 kg of carbon dioxide are generated to produce 1 t of individual REOs from HCL and LCL routes, respectively. Moreover, the carbon dioxide emitted from the process, including the RE-hydroxide production, SX, and REOs production, is less than 10 t CO2. A sensitivity analysis was also performed to assess the changeability of the environmental footprints of the main inputs in the SX process, as the main stage has a higher contribution to the whole process. This LCA study is the first step toward understanding the environmental influence of new processing methods to produce REEs from coal by-products through a developed pilot-scale process.

Abstract Image

利用煤炭副产品生产可持续稀土氧化物的创新型试验规模工艺:综合环境影响评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Rare Earths
Journal of Rare Earths 化学-应用化学
CiteScore
8.70
自引率
14.30%
发文量
374
审稿时长
1.7 months
期刊介绍: The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field. The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信