{"title":"Transition Threshold for the 3D Couette Flow in a Finite Channel","authors":"Qi Chen, Dongyi Wei, Zhifei Zhang","doi":"10.1090/memo/1478","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study nonlinear stability of the 3D plane Couette flow <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis y comma 0 comma 0 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(y,0,0)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> at high Reynolds number <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R e\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>R</mml:mi>\n <mml:mi>e</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{Re}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in a finite channel <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper T times left-bracket negative 1 comma 1 right-bracket times double-struck upper T\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {T}\\times [-1,1]\\times \\mathbb {T}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. It is well known that the plane Couette flow is linearly stable for any Reynolds number. However, it could become nonlinearly unstable and transition to turbulence for small but finite perturbations at high Reynolds number. This is so-called Sommerfeld paradox. One resolution of this paradox is to study the transition threshold problem, which is concerned with how much disturbance will lead to the instability of the flow and the dependence of disturbance on the Reynolds number. This work shows that if the initial velocity <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v 0\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>v</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">v_0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfies <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-vertical-bar v 0 minus left-parenthesis y comma 0 comma 0 right-parenthesis double-vertical-bar Subscript upper H squared Baseline less-than-or-equal-to c 0 upper R e Superscript negative 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:msub>\n <mml:mi>v</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:msub>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>R</mml:mi>\n <mml:mi>e</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\|v_0-(y,0,0)\\|_{H^2}\\le c_0{Re}^{-1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for some <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c 0 greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">c_0>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> independent of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R e\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mi>e</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Re</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then the solution of the 3D Navier-Stokes equations is global in time and does not transit away from the Couette flow in the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> sense, and rapidly converges to a streak solution for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t much-greater-than upper R e Superscript one third\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>≫<!-- ≫ --></mml:mo>\n <mml:mi>R</mml:mi>\n <mml:msup>\n <mml:mi>e</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mn>3</mml:mn>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t\\gg Re^{\\frac 13}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> due to the mixing-enhanced dissipation effect. This result confirms the threshold result obtained by Chapman via an asymptotic analysis(JFM 2002). The most key ingredient of the proof is the resolvent estimates for the full linearized 3D Navier-Stokes system around the flow <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper V left-parenthesis y comma z right-parenthesis comma 0 comma 0 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>z</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(V(y,z), 0,0)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V left-parenthesis y comma z right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>z</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">V(y,z)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a small perturbation(but independent of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R e\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mi>e</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Re</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y\">\n <mml:semantics>\n <mml:mi>y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we study nonlinear stability of the 3D plane Couette flow (y,0,0)(y,0,0) at high Reynolds number Re{Re} in a finite channel T×[−1,1]×T\mathbb {T}\times [-1,1]\times \mathbb {T}. It is well known that the plane Couette flow is linearly stable for any Reynolds number. However, it could become nonlinearly unstable and transition to turbulence for small but finite perturbations at high Reynolds number. This is so-called Sommerfeld paradox. One resolution of this paradox is to study the transition threshold problem, which is concerned with how much disturbance will lead to the instability of the flow and the dependence of disturbance on the Reynolds number. This work shows that if the initial velocity v0v_0 satisfies ‖v0−(y,0,0)‖H2≤c0Re−1\|v_0-(y,0,0)\|_{H^2}\le c_0{Re}^{-1} for some c0>0c_0>0 independent of ReRe, then the solution of the 3D Navier-Stokes equations is global in time and does not transit away from the Couette flow in the L∞L^\infty sense, and rapidly converges to a streak solution for t≫Re13t\gg Re^{\frac 13} due to the mixing-enhanced dissipation effect. This result confirms the threshold result obtained by Chapman via an asymptotic analysis(JFM 2002). The most key ingredient of the proof is the resolvent estimates for the full linearized 3D Navier-Stokes system around the flow (V(y,z),0,0)(V(y,z), 0,0), where V(y,z)V(y,z) is a small perturbation(but independent of ReRe) of yy.
本文研究了三维平面 Couette 流 ( y , 0 , 0 ) (y,0,0) 在高雷诺数 R e {Re} 下在有限通道 T × [ - 1 , 1 ] × T \mathbb {T} \times [-1,1]\times \mathbb {T} 中的非线性稳定性。众所周知,平面库埃特流在任何雷诺数下都是线性稳定的。然而,在高雷诺数下,对于微小但有限的扰动,它可能变得非线性不稳定并过渡到湍流。这就是所谓的 Sommerfeld 悖论。解决这一悖论的方法之一是研究过渡阈值问题,即多少扰动会导致流动不稳定以及扰动与雷诺数的关系。这项工作表明,如果初速度 v 0 v_0 满足 ‖ v 0 - ( y , 0 , 0 ) ‖ H 2 ≤ c 0 R e - 1 \|v_0-(y,0、0)\|_{H^2}\le c_0{Re}^{-1} 对于与 R e Re 无关的某个 c 0 > 0 c_0>0,则三维纳维-斯托克斯方程的解在时间上是全局的,不会偏离 L ∞ L^\infty 意义上的 Couette 流,并且由于混合增强的耗散效应,在 t ≫ R e 1 3 t\gg Re^{\frac 13} 时迅速收敛到条纹解。这一结果证实了查普曼通过渐近分析得到的阈值结果(JFM 2002)。证明的最关键部分是围绕流动的全线性化三维纳维-斯托克斯系统的解析量估计( V ( y , z ) , 0 , 0 ) (V(y,z), 0,0) ,其中 V ( y , z ) V(y,z) 是 y y 的小扰动(但与 R e Re 无关)。