Superconducting nanostrip single photon detectors fabricated of aluminum thin-films

IF 5.6 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuting Jiang , Xingyu Zhang , Hui Zhou , Xiaofu Zhang , Hao Li , Lixing You
{"title":"Superconducting nanostrip single photon detectors fabricated of aluminum thin-films","authors":"Yuting Jiang ,&nbsp;Xingyu Zhang ,&nbsp;Hui Zhou ,&nbsp;Xiaofu Zhang ,&nbsp;Hao Li ,&nbsp;Lixing You","doi":"10.1016/j.supcon.2024.100096","DOIUrl":null,"url":null,"abstract":"<div><p>We systematically investigated the detection performance of Al nanostrips for single photons at various wavelengths. The Al films were deposited using magnetron sputtering, and the sophisticated nanostructures and morphology of the deposited films were revealed through high-resolution transmission electron microscopy. The fabricated Al meander nanostrips, with a thickness of 4.2 nm and a width of 178 nm, exhibited a superconducting transition temperature of 2.4 K and a critical current of approximately 5 μA at 0.85 K. While the Al nanostrips demonstrated a saturated internal quantum efficiency for 405-nm photons, the internal detection efficiency exhibited an exponential dependence on bias current without any saturation tendency for 1550-nm photons. This behavior can be attributed to the relatively large diffusion coefficient and coherence length of the Al films. By further narrowing the nanostrip width, the Al-SNSPDs remain capable of effectively detecting single telecom photons to facilitate practical applications.</p></div>","PeriodicalId":101185,"journal":{"name":"Superconductivity","volume":"10 ","pages":"Article 100096"},"PeriodicalIF":5.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772830724000139/pdfft?md5=cc4de4e35457f3c41620e11c070c4e76&pid=1-s2.0-S2772830724000139-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772830724000139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We systematically investigated the detection performance of Al nanostrips for single photons at various wavelengths. The Al films were deposited using magnetron sputtering, and the sophisticated nanostructures and morphology of the deposited films were revealed through high-resolution transmission electron microscopy. The fabricated Al meander nanostrips, with a thickness of 4.2 nm and a width of 178 nm, exhibited a superconducting transition temperature of 2.4 K and a critical current of approximately 5 μA at 0.85 K. While the Al nanostrips demonstrated a saturated internal quantum efficiency for 405-nm photons, the internal detection efficiency exhibited an exponential dependence on bias current without any saturation tendency for 1550-nm photons. This behavior can be attributed to the relatively large diffusion coefficient and coherence length of the Al films. By further narrowing the nanostrip width, the Al-SNSPDs remain capable of effectively detecting single telecom photons to facilitate practical applications.

用铝薄膜制造的超导纳米带单光子探测器
我们系统地研究了铝纳米带对不同波长单光子的探测性能。使用磁控溅射沉积了铝膜,并通过高分辨率透射电子显微镜揭示了沉积膜复杂的纳米结构和形貌。制备的铝蜿蜒纳米带厚度为 4.2 nm,宽度为 178 nm,超导转变温度为 2.4 K,0.85 K 时的临界电流约为 5 μA。虽然铝纳米带对 405-nm 光子表现出饱和的内部量子效率,但对 1550-nm 光子而言,内部检测效率表现出对偏置电流的指数依赖性,没有任何饱和趋势。这种行为可归因于铝膜相对较大的扩散系数和相干长度。通过进一步缩小纳米带宽度,Al-SNSPD 仍能有效探测单个电信光子,从而促进实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信