{"title":"Symmetry engineering in low-dimensional materials","authors":"Jiawei Li , Xuesong Li , Hongwei Zhu","doi":"10.1016/j.mattod.2024.03.014","DOIUrl":null,"url":null,"abstract":"<div><p>Symmetry is a significant concept that has played a fundamental role in various fields of science, including particle physics, condensed matter physics, and materials science. Symmetry has contributed to the advancement of our understanding of phenomena such as the discovery of new particles, spintronics, superconductivity, and the modulation of material properties. The principle of symmetry continues to guide progress and unification across various scientific disciplines. The emergence of low-dimensional materials (LDMs) has significantly expanded the materials landscape, enabling potential for the modulation of their properties through symmetry engineering. This has opened up new avenues for theoretical research and advanced device development. This review summarizes the application of symmetry in different materials systems and highlights the latest research progress in symmetry breaking engineering of LDMs. The benefits of incorporating symmetry principles from physics into materials science are also discussed.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 187-209"},"PeriodicalIF":21.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000518","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Symmetry is a significant concept that has played a fundamental role in various fields of science, including particle physics, condensed matter physics, and materials science. Symmetry has contributed to the advancement of our understanding of phenomena such as the discovery of new particles, spintronics, superconductivity, and the modulation of material properties. The principle of symmetry continues to guide progress and unification across various scientific disciplines. The emergence of low-dimensional materials (LDMs) has significantly expanded the materials landscape, enabling potential for the modulation of their properties through symmetry engineering. This has opened up new avenues for theoretical research and advanced device development. This review summarizes the application of symmetry in different materials systems and highlights the latest research progress in symmetry breaking engineering of LDMs. The benefits of incorporating symmetry principles from physics into materials science are also discussed.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.