Sparse recovery from quadratic measurements with external field

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Augustin Cosse
{"title":"Sparse recovery from quadratic measurements with external field","authors":"Augustin Cosse","doi":"10.1016/j.apnum.2024.04.012","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by recent results in the statistical physics of spin glasses, we study the recovery of a sparse vector <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> denotes the <em>n</em>-dimensional unit sphere, <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mi>k</mi><mo>&lt;</mo><mi>n</mi></math></span>, from <em>m</em> quadratic measurements of the form <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo><mo>〈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>⊺</mo></mrow></msubsup><mo>〉</mo><mo>+</mo><mi>λ</mi><mo>〈</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>〉</mo></math></span> where <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> have i.i.d. Gaussian entries. This can be related to a constrained version of the 2-spin Hamiltonian with external field for which it was shown (in the absence of any structural constraint and in the asymptotic regime) in <span><span>[1]</span></span> that the geometry of the energy landscape becomes trivial above a certain threshold <span><math><mi>λ</mi><mo>&gt;</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Building on this idea, we characterize the recovery of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> as a function of <span><math><mi>λ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. We show that recovery of the vector <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> can be guaranteed as soon as <span><math><mi>m</mi><mo>≳</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∨</mo><mi>k</mi></math></span>, <span><math><mi>λ</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> provided that this vector satisfies a sufficiently strong incoherence condition, thus retrieving the linear regime for an external field <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo><mo>/</mo><mi>λ</mi><mo>≲</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>. A similar result (with a slightly deteriorating sample complexity) can be shown for weaker fields. Our proof relies on an interpolation between the linear and quadratic settings, as well as on standard convex geometry arguments.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 146-169"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424000965","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by recent results in the statistical physics of spin glasses, we study the recovery of a sparse vector x0Sn1, where Sn1 denotes the n-dimensional unit sphere, x00=k<n, from m quadratic measurements of the form (1λ)Ai,x0x0+λci,x0 where Ai,ci have i.i.d. Gaussian entries. This can be related to a constrained version of the 2-spin Hamiltonian with external field for which it was shown (in the absence of any structural constraint and in the asymptotic regime) in [1] that the geometry of the energy landscape becomes trivial above a certain threshold λ>λc(0,1). Building on this idea, we characterize the recovery of x0 as a function of λ[0,1]. We show that recovery of the vector x0 can be guaranteed as soon as mk2(1λ)2/λ2k, λ>1/2 provided that this vector satisfies a sufficiently strong incoherence condition, thus retrieving the linear regime for an external field (1λ)/λk1/2. A similar result (with a slightly deteriorating sample complexity) can be shown for weaker fields. Our proof relies on an interpolation between the linear and quadratic settings, as well as on standard convex geometry arguments.
利用外部磁场从二次测量中进行稀疏恢复
受自旋玻璃统计物理学最新成果的启发,我们研究了稀疏向量x0∈Sn−1的恢复,其中Sn−1表示n维单位球,‖x0‖l0 =k<n,从m次二次测量的形式(1−λ) < Ai,x0x0⊺> +λ < ci,x0 >,其中Ai,ci有i.i.d高斯项。这可能与带外场的2自旋哈密顿量的约束版本有关,在[1]中显示(在没有任何结构约束和渐近状态下),在某个阈值λ>;λc∈(0,1)以上,能量景观的几何形状变得微不足道。基于这个想法,我们将x0的恢复描述为λ∈[0,1]的函数。我们证明,只要向量满足一个足够强的非相干条件,就可以保证在m ω k2(1−λ)2/λ2 /λ2∨k, λ>;1/2时恢复向量x0,从而恢复外场(1−λ)/λ≥k−1/2的线性状态。对于较弱的场,可以显示类似的结果(样本复杂性略有下降)。我们的证明依赖于线性和二次设置之间的插值,以及标准凸几何参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信