Overcoming the inhibitory effects of urea to improve the kinetics of microbial-induced calcium carbonate precipitation (MICCP) by Lysinibacillus sphaericus strain MB284
IF 2.3 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Seyed Ali Rahmaninezhad , Mohammad Houshmand , Amirreza Sadighi , Kiana Ahmari , Divya Kamireddi , Reva M. Street , Yaghoob (Amir) Farnam , Caroline L. Schauer , Ahmad Raeisi Najafi , Christopher M. Sales
{"title":"Overcoming the inhibitory effects of urea to improve the kinetics of microbial-induced calcium carbonate precipitation (MICCP) by Lysinibacillus sphaericus strain MB284","authors":"Seyed Ali Rahmaninezhad , Mohammad Houshmand , Amirreza Sadighi , Kiana Ahmari , Divya Kamireddi , Reva M. Street , Yaghoob (Amir) Farnam , Caroline L. Schauer , Ahmad Raeisi Najafi , Christopher M. Sales","doi":"10.1016/j.jbiosc.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Among different microbial-induced calcium carbonate precipitation (MICCP) mechanisms utilized for biomineralization, ureolysis leads to the greatest yields of calcium carbonate. Unfortunately, it is reported that urea-induced growth inhibition can delay urea hydrolysis but it is not clear how this affects MICCP kinetics. This study investigated the impact of urea addition on the MICCP performance of <em>Lysinibacillus sphaericus</em> MB284 not previously grown on urea (thereafter named bio-agents), compared with those previously cultured in urea-rich media (20 g/L) (hereafter named bio-agents<sup>+</sup> or bio-agents-plus). While it was discovered that initial urea concentrations exceeding 3 g/L temporarily hindered cell growth and MICCP reactions for bio-agents, employing bio-agents<sup>+</sup> accelerated the initiation of bacterial growth by 33% and led to a 1.46-fold increase in the initial yield of calcium carbonate in media containing 20 g/L of urea. The improved tolerance of bio-agents<sup>+</sup> to urea is attributed to the presence of pre-produced endogenous urease, which serves to reduce the initial urea concentration, alleviate growth inhibition, and expedite biomineralization. Notably, elevating the initial concentration of bio-agents<sup>+</sup> from OD<sub>600</sub> of 0.01 to 1, housing a higher content of endogenous urease, accelerated the initiation of MICCP reactions and boosted the ultimate yield of biomineralization by 2.6 times while the media was supplemented with 20 g/L of urea. These results elucidate the advantages of employing bio-agents<sup>+</sup> with higher initial cell concentrations to successfully mitigate the temporary inhibitory effects of urea on biomineralization kinetics, offering a promising strategy for accelerating the production of calcium carbonate for applications like bio self-healing of concrete.</p></div>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":"138 1","pages":"Pages 63-72"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389172324001051","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Among different microbial-induced calcium carbonate precipitation (MICCP) mechanisms utilized for biomineralization, ureolysis leads to the greatest yields of calcium carbonate. Unfortunately, it is reported that urea-induced growth inhibition can delay urea hydrolysis but it is not clear how this affects MICCP kinetics. This study investigated the impact of urea addition on the MICCP performance of Lysinibacillus sphaericus MB284 not previously grown on urea (thereafter named bio-agents), compared with those previously cultured in urea-rich media (20 g/L) (hereafter named bio-agents+ or bio-agents-plus). While it was discovered that initial urea concentrations exceeding 3 g/L temporarily hindered cell growth and MICCP reactions for bio-agents, employing bio-agents+ accelerated the initiation of bacterial growth by 33% and led to a 1.46-fold increase in the initial yield of calcium carbonate in media containing 20 g/L of urea. The improved tolerance of bio-agents+ to urea is attributed to the presence of pre-produced endogenous urease, which serves to reduce the initial urea concentration, alleviate growth inhibition, and expedite biomineralization. Notably, elevating the initial concentration of bio-agents+ from OD600 of 0.01 to 1, housing a higher content of endogenous urease, accelerated the initiation of MICCP reactions and boosted the ultimate yield of biomineralization by 2.6 times while the media was supplemented with 20 g/L of urea. These results elucidate the advantages of employing bio-agents+ with higher initial cell concentrations to successfully mitigate the temporary inhibitory effects of urea on biomineralization kinetics, offering a promising strategy for accelerating the production of calcium carbonate for applications like bio self-healing of concrete.
期刊介绍:
The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.