Impact of ocean data assimilation on the seasonal forecast of the 2014/15 marine heatwave in the Northeast Pacific Ocean

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Tiantian Tang, Jiaying He, Huihang Sun, Jingjia Luo
{"title":"Impact of ocean data assimilation on the seasonal forecast of the 2014/15 marine heatwave in the Northeast Pacific Ocean","authors":"Tiantian Tang,&nbsp;Jiaying He,&nbsp;Huihang Sun,&nbsp;Jingjia Luo","doi":"10.1016/j.aosl.2024.100498","DOIUrl":null,"url":null,"abstract":"<div><div>A remarkable marine heatwave, known as the “Blob”, occurred in the Northeast Pacific Ocean from late 2013 to early 2016, which displayed strong warm anomalies extending from the surface to a depth of 300 m. This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science (NUIST-CFS 1.0) to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave. The sea surface temperature (SST) nudging scheme assimilates SST only, while the deterministic ensemble Kalman filter (EnKF) scheme assimilates observations from the surface to the deep ocean. The latter notably improves the forecasting skill for subsurface temperature anomalies, especially at the depth of 100–300 m (the lower layer), outperforming the SST nudging scheme. It excels in predicting both horizontal and vertical heat transport in the lower layer, contributing to improved forecasts of the lower-layer warming during the Blob. These improvements stem from the assimilation of subsurface observational data, which are important in predicting the upper-ocean conditions. The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.</div><div>摘要</div><div>2013年底至2016年初, 东北太平洋上发生了历史上罕见的极端海洋热浪事件 (称为“Blob”事件) , 形成了从海表延伸至海洋深处300m的强烈且持续的海温暖异常. 本文利用南京信息工程大学全球气候预测系统1.0版本 (NUIST-CFS 1.0) , 采用两种海洋资料同化方案, 探究海洋资料同化差异对这一极端海洋热浪事件季节预测的影响. 本文采用的一种同化方案为仅同化海表面温度 (Surface sea temperature, SST) 的SST-nudging方案, 而另一种方案为在前一种方案的基础上加入确定性集合卡尔曼滤波 (Deterministic Ensemble Kalman Filter, DEnKF) , 同化更多海洋观测数据的EnKF方案. 主要结论为, 利用EnKF方案可显著提高对“Blob”期间次表层温度异常预测的准确性, 这主要源于EnKF方案在预测次表层的水平和垂直热传输方面表现出色. 该研究有助于更好地理解海洋热浪事件潜在物理机制及其季节预测水平.</div></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"18 1","pages":"Article 100498"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283424000473","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A remarkable marine heatwave, known as the “Blob”, occurred in the Northeast Pacific Ocean from late 2013 to early 2016, which displayed strong warm anomalies extending from the surface to a depth of 300 m. This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science (NUIST-CFS 1.0) to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave. The sea surface temperature (SST) nudging scheme assimilates SST only, while the deterministic ensemble Kalman filter (EnKF) scheme assimilates observations from the surface to the deep ocean. The latter notably improves the forecasting skill for subsurface temperature anomalies, especially at the depth of 100–300 m (the lower layer), outperforming the SST nudging scheme. It excels in predicting both horizontal and vertical heat transport in the lower layer, contributing to improved forecasts of the lower-layer warming during the Blob. These improvements stem from the assimilation of subsurface observational data, which are important in predicting the upper-ocean conditions. The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.
摘要
2013年底至2016年初, 东北太平洋上发生了历史上罕见的极端海洋热浪事件 (称为“Blob”事件) , 形成了从海表延伸至海洋深处300m的强烈且持续的海温暖异常. 本文利用南京信息工程大学全球气候预测系统1.0版本 (NUIST-CFS 1.0) , 采用两种海洋资料同化方案, 探究海洋资料同化差异对这一极端海洋热浪事件季节预测的影响. 本文采用的一种同化方案为仅同化海表面温度 (Surface sea temperature, SST) 的SST-nudging方案, 而另一种方案为在前一种方案的基础上加入确定性集合卡尔曼滤波 (Deterministic Ensemble Kalman Filter, DEnKF) , 同化更多海洋观测数据的EnKF方案. 主要结论为, 利用EnKF方案可显著提高对“Blob”期间次表层温度异常预测的准确性, 这主要源于EnKF方案在预测次表层的水平和垂直热传输方面表现出色. 该研究有助于更好地理解海洋热浪事件潜在物理机制及其季节预测水平.

Abstract Image

海洋数据同化对东北太平洋 2014/15 年海洋热浪季节性预报的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信