On \(^*\)-fusion frames for Hilbert \(C^*\)-modules

IF 0.8 Q2 MATHEMATICS
Nadia Assila, Samir Kabbaj, Hicham Zoubeir
{"title":"On \\(^*\\)-fusion frames for Hilbert \\(C^*\\)-modules","authors":"Nadia Assila,&nbsp;Samir Kabbaj,&nbsp;Hicham Zoubeir","doi":"10.1007/s43036-024-00337-6","DOIUrl":null,"url":null,"abstract":"<div><p>Our paper aims to extend fusion frames to Hilbert C<span>\\(^{*}\\)</span>-modules. We introduce <span>\\(^*\\)</span>-fusion frames associated to weighted sequences of closed orthogonally complemented submodules, showcasing similarities to Hilbert space frames. Using Dragan S. Djordjevic’s distance, we define submodule angles and establish a new topology on the set of sequences of closed orthogonally complemented submodules. Relying on this topology, we obtain for our <span>\\(^*\\)</span>-fusion frames, some new perturbation results of topological and geometric character.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00337-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our paper aims to extend fusion frames to Hilbert C\(^{*}\)-modules. We introduce \(^*\)-fusion frames associated to weighted sequences of closed orthogonally complemented submodules, showcasing similarities to Hilbert space frames. Using Dragan S. Djordjevic’s distance, we define submodule angles and establish a new topology on the set of sequences of closed orthogonally complemented submodules. Relying on this topology, we obtain for our \(^*\)-fusion frames, some new perturbation results of topological and geometric character.

论希尔伯特 $$C^*$$ 模块的 $$^*$$ 融合框架
我们的论文旨在将融合框架扩展到希尔伯特 C(^{*}\)模块。我们引入了与封闭正交互补子模的加权序列相关联的(^**)融合框架,展示了与希尔伯特空间框架的相似性。利用 Dragan S. Djordjevic 的距离,我们定义了子模角,并在封闭的正交互补子模序列集合上建立了新的拓扑学。依靠这个拓扑,我们为我们的 \(^*\)-fusion 框架得到了一些拓扑和几何性质的新扰动结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信