Zong-Shan Wang, Shi-Jin Li, Hong-Wei Ding, Gaurav Dhiman, Peng Hou, Ai-Shan Li, Peng Hu, Zhi-Jun Yang, Jie Wang
{"title":"Elite-guided equilibrium optimiser based on information enhancement: Algorithm and mobile edge computing applications","authors":"Zong-Shan Wang, Shi-Jin Li, Hong-Wei Ding, Gaurav Dhiman, Peng Hou, Ai-Shan Li, Peng Hu, Zhi-Jun Yang, Jie Wang","doi":"10.1049/cit2.12316","DOIUrl":null,"url":null,"abstract":"<p>The Equilibrium Optimiser (EO) has been demonstrated to be one of the metaheuristic algorithms that can effectively solve global optimisation problems. Balancing the paradox between exploration and exploitation operations while enhancing the ability to jump out of the local optimum are two key points to be addressed in EO research. To alleviate these limitations, an EO variant named adaptive elite-guided Equilibrium Optimiser (AEEO) is introduced. Specifically, the adaptive elite-guided search mechanism enhances the balance between exploration and exploitation. The modified mutualism phase reinforces the information interaction among particles and local optima avoidance. The cooperation of these two mechanisms boosts the overall performance of the basic EO. The AEEO is subjected to competitive experiments with state-of-the-art algorithms and modified algorithms on 23 classical benchmark functions and IEE CEC 2017 function test suite. Experimental results demonstrate that AEEO outperforms several well-performing EO variants, DE variants, PSO variants, SSA variants, and GWO variants in terms of convergence speed and accuracy. In addition, the AEEO algorithm is used for the edge server (ES) placement problem in mobile edge computing (MEC) environments. The experimental results show that the author’s approach outperforms the representative approaches compared in terms of access latency and deployment cost.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 5","pages":"1126-1171"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12316","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12316","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Equilibrium Optimiser (EO) has been demonstrated to be one of the metaheuristic algorithms that can effectively solve global optimisation problems. Balancing the paradox between exploration and exploitation operations while enhancing the ability to jump out of the local optimum are two key points to be addressed in EO research. To alleviate these limitations, an EO variant named adaptive elite-guided Equilibrium Optimiser (AEEO) is introduced. Specifically, the adaptive elite-guided search mechanism enhances the balance between exploration and exploitation. The modified mutualism phase reinforces the information interaction among particles and local optima avoidance. The cooperation of these two mechanisms boosts the overall performance of the basic EO. The AEEO is subjected to competitive experiments with state-of-the-art algorithms and modified algorithms on 23 classical benchmark functions and IEE CEC 2017 function test suite. Experimental results demonstrate that AEEO outperforms several well-performing EO variants, DE variants, PSO variants, SSA variants, and GWO variants in terms of convergence speed and accuracy. In addition, the AEEO algorithm is used for the edge server (ES) placement problem in mobile edge computing (MEC) environments. The experimental results show that the author’s approach outperforms the representative approaches compared in terms of access latency and deployment cost.
均衡优化器(EO)已被证明是能有效解决全局优化问题的元启发式算法之一。平衡探索与开发操作之间的矛盾,同时提高跳出局部最优的能力,是 EO 研究需要解决的两个关键点。为了缓解这些限制,我们引入了一种名为自适应精英引导均衡优化器(AEEO)的 EO 变体。具体来说,自适应精英引导搜索机制增强了探索与开发之间的平衡。修改后的互助阶段加强了粒子间的信息交互和局部最优避免。这两种机制的合作提高了基本 EO 的整体性能。在 23 个经典基准函数和 IEE CEC 2017 函数测试套件上,AEEO 与最先进的算法和改进算法进行了竞争性实验。实验结果表明,在收敛速度和准确性方面,AEEO优于几种性能良好的EO变体、DE变体、PSO变体、SSA变体和GWO变体。此外,AEEO 算法还被用于移动边缘计算(MEC)环境中的边缘服务器(ES)放置问题。实验结果表明,在访问延迟和部署成本方面,作者的方法优于所比较的代表性方法。
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.