An infectious disease epidemic model with migration and stochastic transmission in deterministic and stochastic environments

Mohammed Salman , Prativa Sahoo , Anushaya Mohapatra , Sanjay Kumar Mohanty , Libin Rong
{"title":"An infectious disease epidemic model with migration and stochastic transmission in deterministic and stochastic environments","authors":"Mohammed Salman ,&nbsp;Prativa Sahoo ,&nbsp;Anushaya Mohapatra ,&nbsp;Sanjay Kumar Mohanty ,&nbsp;Libin Rong","doi":"10.1016/j.health.2024.100337","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding population migration is essential for controlling highly infectious diseases. This paper studies the global dynamics of an infectious disease epidemic model incorporating population migration and a stochastic transmission rate. Our findings demonstrate that in deterministic and stochastic environments, the models exhibit global Lyapunov stability near the disease-free equilibrium point, determined by a threshold parameter. Furthermore, we analyze the effect of migration on infectious diseases. We discover that the number of infections and the peak value of the infection curve increase with a higher level of population migration. These results are supported by numerical illustrations that hold epidemiological relevance. Additionally, the disease-free equilibrium of the associated time delay model is linearly asymptotically stable, and the endemic equilibrium exhibits more bifurcation for larger time delay values.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100337"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277244252400039X/pdfft?md5=4fe7641c44b41f4923bebfb1b962f470&pid=1-s2.0-S277244252400039X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277244252400039X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding population migration is essential for controlling highly infectious diseases. This paper studies the global dynamics of an infectious disease epidemic model incorporating population migration and a stochastic transmission rate. Our findings demonstrate that in deterministic and stochastic environments, the models exhibit global Lyapunov stability near the disease-free equilibrium point, determined by a threshold parameter. Furthermore, we analyze the effect of migration on infectious diseases. We discover that the number of infections and the peak value of the infection curve increase with a higher level of population migration. These results are supported by numerical illustrations that hold epidemiological relevance. Additionally, the disease-free equilibrium of the associated time delay model is linearly asymptotically stable, and the endemic equilibrium exhibits more bifurcation for larger time delay values.

在确定性和随机环境中带有迁移和随机传播的传染病流行模型
了解人口迁移对控制高度传染性疾病至关重要。本文研究了包含人口迁移和随机传播率的传染病流行模型的全局动态。我们的研究结果表明,在确定性和随机环境中,模型在由阈值参数决定的无疾病平衡点附近表现出全局李亚普诺夫稳定性。此外,我们还分析了移民对传染病的影响。我们发现,随着人口迁移水平的提高,感染数量和感染曲线的峰值也会增加。这些结果得到了与流行病学相关的数字说明的支持。此外,相关时间延迟模型的无疾病均衡是线性渐近稳定的,而流行均衡在时间延迟值越大时越容易出现分叉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信