Evolution of deformation mechanisms and their orientation dependence in fine-grained Mg-3Gd during tension

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Faping Hu , Tianbo Yu , Hao Chen , Fang Han , Keshun Dai , Fangcheng Qiu , Weidong Xie , Xiaoxu Huang
{"title":"Evolution of deformation mechanisms and their orientation dependence in fine-grained Mg-3Gd during tension","authors":"Faping Hu ,&nbsp;Tianbo Yu ,&nbsp;Hao Chen ,&nbsp;Fang Han ,&nbsp;Keshun Dai ,&nbsp;Fangcheng Qiu ,&nbsp;Weidong Xie ,&nbsp;Xiaoxu Huang","doi":"10.1016/j.jma.2024.03.019","DOIUrl":null,"url":null,"abstract":"<div><div>Magnesium alloys usually exhibit poor ductility attributed to their intrinsic hexagonal close-packed (hcp) structure, which fails to provide sufficient independent slip systems for homogeneous deformation. Here we demonstrate that multiple deformation mechanisms can be activated with increasing tensile strain in a fine-grained Mg-3Gd with a weak basal texture. 〈<em>c</em> + <em>a</em>〉 slip, tension twinning and compression/double twinning exhibit a high orientation dependence at an early stage of deformation, whereas the orientation dependence becomes less obvious with further increasing strain. The high work hardening rate at the strain of 2%–5% is accompanied by the significant increase of 〈<em>c</em> + <em>a</em>〉 slip and tension twinning activities. The fine microstructure strongly restricts the activation and growth of twinning, resulting in a slow exhaust of tension twinning and thin compression twins. The restriction of twinning and the activation of profuse 〈<em>c</em> + <em>a</em>〉 slip near grain/twin boundaries, relaxing the stress concentration, sustain the homogeneous deformation to a high strain.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"12 12","pages":"Pages 5095-5107"},"PeriodicalIF":15.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221395672400121X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium alloys usually exhibit poor ductility attributed to their intrinsic hexagonal close-packed (hcp) structure, which fails to provide sufficient independent slip systems for homogeneous deformation. Here we demonstrate that multiple deformation mechanisms can be activated with increasing tensile strain in a fine-grained Mg-3Gd with a weak basal texture. 〈c + a〉 slip, tension twinning and compression/double twinning exhibit a high orientation dependence at an early stage of deformation, whereas the orientation dependence becomes less obvious with further increasing strain. The high work hardening rate at the strain of 2%–5% is accompanied by the significant increase of 〈c + a〉 slip and tension twinning activities. The fine microstructure strongly restricts the activation and growth of twinning, resulting in a slow exhaust of tension twinning and thin compression twins. The restriction of twinning and the activation of profuse 〈c + a〉 slip near grain/twin boundaries, relaxing the stress concentration, sustain the homogeneous deformation to a high strain.
拉伸过程中细粒镁-3Gd 的变形机制演变及其取向依赖性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信