Prediction of Functional and Anatomic Progression in Lamellar Macular Holes

IF 3.2 Q1 OPHTHALMOLOGY
{"title":"Prediction of Functional and Anatomic Progression in Lamellar Macular Holes","authors":"","doi":"10.1016/j.xops.2024.100529","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To use artificial intelligence to identify imaging biomarkers for anatomic and functional progression of lamellar macular hole (LMH) and elaborate a deep learning (DL) model based on OCT and OCT angiography (OCTA) for prediction of visual acuity (VA) loss in untreated LMHs.</p></div><div><h3>Design</h3><p>Multicentric retrospective observational study.</p></div><div><h3>Participants</h3><p>Patients aged &gt;18 years diagnosed with idiopathic LMHs with availability of good quality OCT and OCTA acquisitions at baseline and a follow-up &gt;2 years were recruited.</p></div><div><h3>Methods</h3><p>A DL model based on soft voting of 2 separate models (OCT and OCTA-based respectively) was trained for identification of cases with VA loss &gt;5 ETDRS letters (attributable to LMH progression only) during a 2-year follow-up. Biomarkers of anatomic and functional progression of LMH were evaluated with regression analysis, feature learning (support vector machine [SVM] model), and visualization maps.</p></div><div><h3>Main Outcome Measures</h3><p>Ellipsoid zone (EZ) damage, volumetric tissue loss (TL), vitreopapillary adhesion (VPA), epiretinal proliferation, central macular thickness (CMT), parafoveal vessel density (VD) and vessel length density (VLD) of retinal capillary plexuses, choriocapillaris (CC), and flow deficit density (FDD).</p></div><div><h3>Results</h3><p>Functionally progressing LMHs (VA-PROG group, 41/139 eyes [29.5%]) showed higher prevalence of EZ damage, higher volumetric TL, higher prevalence of VPA, lower superficial capillary plexus (SCP), VD and VLD, and higher CC FDD compared with functionally stable LMHs (VA-STABLE group, 98/139 eyes [70.5%]). The DL and SVM models showed 92.5% and 90.5% accuracy, respectively. The best-performing features in the SVM were EZ damage, TL, CC FDD, and parafoveal SCP VD. Epiretinal proliferation and lower CMT were risk factors for anatomic progression only.</p></div><div><h3>Conclusions</h3><p>Deep learning can accurately predict functional progression of untreated LMHs over 2 years. The use of AI might improve our understanding of the natural course of retinal diseases. The integrity of CC and SCP might play an important role in the progression of LMHs.</p></div><div><h3>Financial Disclosure(s)</h3><p>The authors have no proprietary or commercial interest in any materials discussed in this article.</p></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666914524000654/pdfft?md5=c2b312975bed4d456349b36dd1a9dbad&pid=1-s2.0-S2666914524000654-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666914524000654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

To use artificial intelligence to identify imaging biomarkers for anatomic and functional progression of lamellar macular hole (LMH) and elaborate a deep learning (DL) model based on OCT and OCT angiography (OCTA) for prediction of visual acuity (VA) loss in untreated LMHs.

Design

Multicentric retrospective observational study.

Participants

Patients aged >18 years diagnosed with idiopathic LMHs with availability of good quality OCT and OCTA acquisitions at baseline and a follow-up >2 years were recruited.

Methods

A DL model based on soft voting of 2 separate models (OCT and OCTA-based respectively) was trained for identification of cases with VA loss >5 ETDRS letters (attributable to LMH progression only) during a 2-year follow-up. Biomarkers of anatomic and functional progression of LMH were evaluated with regression analysis, feature learning (support vector machine [SVM] model), and visualization maps.

Main Outcome Measures

Ellipsoid zone (EZ) damage, volumetric tissue loss (TL), vitreopapillary adhesion (VPA), epiretinal proliferation, central macular thickness (CMT), parafoveal vessel density (VD) and vessel length density (VLD) of retinal capillary plexuses, choriocapillaris (CC), and flow deficit density (FDD).

Results

Functionally progressing LMHs (VA-PROG group, 41/139 eyes [29.5%]) showed higher prevalence of EZ damage, higher volumetric TL, higher prevalence of VPA, lower superficial capillary plexus (SCP), VD and VLD, and higher CC FDD compared with functionally stable LMHs (VA-STABLE group, 98/139 eyes [70.5%]). The DL and SVM models showed 92.5% and 90.5% accuracy, respectively. The best-performing features in the SVM were EZ damage, TL, CC FDD, and parafoveal SCP VD. Epiretinal proliferation and lower CMT were risk factors for anatomic progression only.

Conclusions

Deep learning can accurately predict functional progression of untreated LMHs over 2 years. The use of AI might improve our understanding of the natural course of retinal diseases. The integrity of CC and SCP might play an important role in the progression of LMHs.

Financial Disclosure(s)

The authors have no proprietary or commercial interest in any materials discussed in this article.

预测片状黄斑孔的功能和解剖进展
目的利用人工智能识别板层黄斑孔(LMH)解剖学和功能进展的成像生物标志物,并制定基于 OCT 和 OCT 血管造影(OCTA)的深度学习(DL)模型,用于预测未经治疗的 LMH 视力(VA)下降。方法训练基于2个独立模型(分别基于OCT和OCTA)软投票的DL模型,以识别2年随访期间视力损失达5个ETDRS字母(仅由LMH进展引起)的病例。通过回归分析、特征学习(支持向量机 [SVM] 模型)和可视化地图对 LMH 解剖和功能进展的生物标志物进行评估。主要结果指标椭圆体区(EZ)损伤、体积组织损失(TL)、玻璃体毛细血管粘连(VPA)、视网膜上皮增生、黄斑中心厚度(CMT)、视网膜毛细血管丛的眼底旁血管密度(VD)和血管长度密度(VLD)、绒毛膜(CC)和血流缺损密度(FDD)。结果与功能稳定的LMHs(VA-STABLE组,98/139眼[70.5%])相比,功能进展的LMHs(VA-PROG组,41/139眼[29.5%])显示出更高的EZ损伤发生率、更高的体积TL、更高的VPA发生率、更低的毛细血管浅丛(SCP)、VD和VLD以及更高的CC FDD。DL 和 SVM 模型的准确率分别为 92.5% 和 90.5%。SVM 中表现最好的特征是 EZ 损伤、TL、CC FDD 和视网膜旁 SCP VD。结论深度学习可以准确预测两年内未经治疗的 LMH 的功能性进展。人工智能的使用可能会提高我们对视网膜疾病自然病程的理解。CC和SCP的完整性可能在LMHs的进展过程中扮演重要角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ophthalmology science
Ophthalmology science Ophthalmology
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
89 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信