Ultra-sensitive electrochemical immunosensors for clinically important biomarker detection: Prospects, opportunities, and global trends

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Anton Popov , Benediktas Brasiunas , Katazyna Blazevic , Asta Kausaite-Minkstimiene , Almira Ramanaviciene
{"title":"Ultra-sensitive electrochemical immunosensors for clinically important biomarker detection: Prospects, opportunities, and global trends","authors":"Anton Popov ,&nbsp;Benediktas Brasiunas ,&nbsp;Katazyna Blazevic ,&nbsp;Asta Kausaite-Minkstimiene ,&nbsp;Almira Ramanaviciene","doi":"10.1016/j.coelec.2024.101524","DOIUrl":null,"url":null,"abstract":"<div><p>This review delves into the many methods by which the specific affinity interaction between antigens and antibodies can be converted into a measurable signal. It provides a synoptic overview of the latest innovations in the realm of electrochemical immunosensor development, with a focus on the diverse technologies and strategies aimed at enhancing analytical signals and detecting ultra-low concentrations of biomarkers. The most important trends in developing multiplexed, non-invasive, or attachable immunosensors and Point-of-Care Testing platforms leveraging various nanomaterials are discussed. Furthermore, global trends in label-free and labelled electrochemical immunosensors are reviewed, taking into account the evolving requirements of patients.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"46 ","pages":"Article 101524"},"PeriodicalIF":7.9000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324000851","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This review delves into the many methods by which the specific affinity interaction between antigens and antibodies can be converted into a measurable signal. It provides a synoptic overview of the latest innovations in the realm of electrochemical immunosensor development, with a focus on the diverse technologies and strategies aimed at enhancing analytical signals and detecting ultra-low concentrations of biomarkers. The most important trends in developing multiplexed, non-invasive, or attachable immunosensors and Point-of-Care Testing platforms leveraging various nanomaterials are discussed. Furthermore, global trends in label-free and labelled electrochemical immunosensors are reviewed, taking into account the evolving requirements of patients.

Abstract Image

Abstract Image

用于临床重要生物标记物检测的超灵敏电化学免疫传感器:前景、机遇和全球趋势
本综述深入探讨了将抗原和抗体之间的特异性亲和力相互作用转化为可测量信号的多种方法。综述概述了电化学免疫传感器开发领域的最新创新,重点关注旨在增强分析信号和检测超低浓度生物标记物的各种技术和策略。讨论了利用各种纳米材料开发多路复用、无创或可贴附免疫传感器和护理点检测平台的最重要趋势。此外,考虑到患者不断变化的需求,还回顾了无标记和有标记电化学免疫传感器的全球趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信