Modeling the improved hydrogen embrittlement tolerance of twin boundaries in face-centered cubic complex concentrated alloys

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Anne Marie Z. Tan , Zhi Li , Yakai Zhao , Upadrasta Ramamurty , Huajian Gao
{"title":"Modeling the improved hydrogen embrittlement tolerance of twin boundaries in face-centered cubic complex concentrated alloys","authors":"Anne Marie Z. Tan ,&nbsp;Zhi Li ,&nbsp;Yakai Zhao ,&nbsp;Upadrasta Ramamurty ,&nbsp;Huajian Gao","doi":"10.1016/j.jmps.2024.105657","DOIUrl":null,"url":null,"abstract":"<div><p>With increasing interest in hydrogen as an alternative fuel, there is a need to develop structural alloys with improved resistance to hydrogen embrittlement (HE) for application in the new hydrogen economy. Complex concentrated alloys (CCAs), which include high entropy alloys and their derivatives, medium entropy alloys, are a new class of structural materials, some of which have reported improved HE resistance. While some studies have suggested that the improved HE resistance in CCAs with the face-centered cubic (fcc) crystal structure may be due to the high density of nanotwins within them, a detailed mechanistic understanding is yet to be developed. Towards that end, following the approach of Zhou, Tehranchi and Curtin, we employ a density functional theory-informed Griffith–Rice model<span><sup>2</sup></span> to predict the ductile or brittle response of a crack tip interacting with twin boundaries (TBs) in a model fcc CCA, CrCoNi, both in the absence of and presence of hydrogen. Both the model and molecular dynamics simulations predict that TBs in fcc alloys are not inherently more susceptible to HE than the bulk matrix, and could in fact improve HE resistance by retarding cracks while promoting dislocation emission along the TB. Thus, designing fcc CCAs with a high density of nanotwins or utilizing gradient nanotwinned structures could be a way forward for realizing alloys with high HE resistance.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"188 ","pages":"Article 105657"},"PeriodicalIF":5.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624001236","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With increasing interest in hydrogen as an alternative fuel, there is a need to develop structural alloys with improved resistance to hydrogen embrittlement (HE) for application in the new hydrogen economy. Complex concentrated alloys (CCAs), which include high entropy alloys and their derivatives, medium entropy alloys, are a new class of structural materials, some of which have reported improved HE resistance. While some studies have suggested that the improved HE resistance in CCAs with the face-centered cubic (fcc) crystal structure may be due to the high density of nanotwins within them, a detailed mechanistic understanding is yet to be developed. Towards that end, following the approach of Zhou, Tehranchi and Curtin, we employ a density functional theory-informed Griffith–Rice model2 to predict the ductile or brittle response of a crack tip interacting with twin boundaries (TBs) in a model fcc CCA, CrCoNi, both in the absence of and presence of hydrogen. Both the model and molecular dynamics simulations predict that TBs in fcc alloys are not inherently more susceptible to HE than the bulk matrix, and could in fact improve HE resistance by retarding cracks while promoting dislocation emission along the TB. Thus, designing fcc CCAs with a high density of nanotwins or utilizing gradient nanotwinned structures could be a way forward for realizing alloys with high HE resistance.

Abstract Image

面心立方复合浓缩合金中孪晶边界氢脆耐受性改进建模
随着人们对氢作为替代燃料的兴趣与日俱增,有必要开发抗氢脆(HE)性能更强的结构合金,以应用于新的氢经济领域。包括高熵合金及其衍生物中熵合金在内的复杂浓缩合金(CCAs)是一类新型结构材料,其中一些材料的抗氢脆性已得到改善。虽然一些研究表明,面心立方(ccc)晶体结构的 CCA 具有更好的抗高热冲击性能可能是由于其内部具有高密度的纳米孪晶,但详细的机理仍有待进一步研究。为此,我们沿用 Zhou、Tehranchi 和 Curtin 的方法,采用密度泛函理论为基础的 Griffith-Rice 模型2 来预测模型 fcc CCA(铬钴镍)中与孪晶边界(TB)相互作用的裂纹尖端在无氢和有氢情况下的韧性或脆性响应。模型和分子动力学模拟都预测,ffc 合金中的孪晶边界并不比块状基体更容易受到氢氧化物的影响,事实上,孪晶边界可以在延缓裂纹的同时促进位错沿孪晶边界释放,从而提高抗氢氧化物的能力。因此,设计具有高密度纳米孪晶或利用梯度纳米孪晶结构的 fcc CCA 可能是实现高抗冲击性合金的一条出路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信