External Correlates of Adult Digital Problem-Solving Process

Susu Zhang, Xueying Tang, Qiwei He, Jingchen Liu, Zhiliang Ying
{"title":"External Correlates of Adult Digital Problem-Solving Process","authors":"Susu Zhang, Xueying Tang, Qiwei He, Jingchen Liu, Zhiliang Ying","doi":"10.1027/2151-2604/a000554","DOIUrl":null,"url":null,"abstract":"Abstract: Computerized assessments and interactive simulation tasks are increasingly popular and afford the collection of process data, i.e., an examinee’s sequence of actions (e.g., clickstreams, keystrokes) that arises from interactions with each task. Action sequence data contain rich information on the problem-solving process but are in a nonstandard, variable-length discrete sequence format. Two methods that directly extract features from the raw action sequences, namely multidimensional scaling and sequence-to-sequence autoencoders, produce multidimensional numerical features that summarize original sequence information. This study explores the utility of action sequence features in understanding how problem-solving behavior relates to cognitive proficiencies and demographic characteristics. This is empirically illustrated with the process data from the 2012 PIAAC PSTRE digital assessment. Regularized regression results showed that action sequence features are more predictive of examinees’ demographic and cognitive characteristics compared to final outcomes. Partial least squares analysis further aided the identification of behavioral patterns systematically associated with demographic/cognitive characteristics.","PeriodicalId":263823,"journal":{"name":"Zeitschrift für Psychologie","volume":"253 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Psychologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1027/2151-2604/a000554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract: Computerized assessments and interactive simulation tasks are increasingly popular and afford the collection of process data, i.e., an examinee’s sequence of actions (e.g., clickstreams, keystrokes) that arises from interactions with each task. Action sequence data contain rich information on the problem-solving process but are in a nonstandard, variable-length discrete sequence format. Two methods that directly extract features from the raw action sequences, namely multidimensional scaling and sequence-to-sequence autoencoders, produce multidimensional numerical features that summarize original sequence information. This study explores the utility of action sequence features in understanding how problem-solving behavior relates to cognitive proficiencies and demographic characteristics. This is empirically illustrated with the process data from the 2012 PIAAC PSTRE digital assessment. Regularized regression results showed that action sequence features are more predictive of examinees’ demographic and cognitive characteristics compared to final outcomes. Partial least squares analysis further aided the identification of behavioral patterns systematically associated with demographic/cognitive characteristics.
成人数字问题解决过程的外部相关因素
摘要:计算机化测评和交互式模拟任务越来越受欢迎,并且能够收集过程数据,即考生与每个任务交互时产生的操作序列(如点击流、击键)。动作序列数据包含解决问题过程的丰富信息,但采用的是非标准、长度可变的离散序列格式。从原始动作序列中直接提取特征的两种方法,即多维缩放和序列到序列自动编码器,可以产生概括原始序列信息的多维数字特征。本研究探讨了动作序列特征在理解问题解决行为如何与认知能力和人口特征相关联方面的效用。2012 年 PIAAC PSTRE 数字评估的过程数据对此进行了实证说明。正则回归结果显示,与最终结果相比,动作序列特征更能预测考生的人口统计和认知特征。偏最小二乘分析进一步帮助识别了与人口统计学/认知特征系统相关的行为模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信