Yue Zhu , Yalong Liao , Meng Wang , Jingxin Dai , Chaoshuai Lei , Xiaobo Liu , Pengyu Mu , Wenjing Li , Hao Zhang
{"title":"Effect of densification process on mechanical enhancement of graphene laminates","authors":"Yue Zhu , Yalong Liao , Meng Wang , Jingxin Dai , Chaoshuai Lei , Xiaobo Liu , Pengyu Mu , Wenjing Li , Hao Zhang","doi":"10.1016/j.nanoms.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene nanosheets have attracted great attention in the field of nanotechnology applications due to their extraordinary mechanical properties. While the structural defects such as gaps will occur during the preparation of graphene laminates, which will greatly damage the performance of the macroscopic material. Hence, a simple and promising mechanical compression method is used to improve the mechanical properties of graphene laminates. However, the roles of the densification process in the mechanical enhancement mechanism of graphene laminates are not clear. In our work, the mechanical enhancement of the compressed graphene (PG) laminates was investigated by the coarse-grained molecular dynamics simulation method. The tensile strength of PG model could be increased by increasing the graphene nanosheet size and the degree of compression in the system. And the model has the stronger van der Waals effect between graphene sheets due to the larger graphene size as well as the higher overlap ratio. Furthermore, two kinds of PG laminates were prepared by densification method, and the tensile strength was consistent with the upward trend of the PG model. This work provides an in-depth understanding on the mechanical enhancement of the densification process and lays a foundation for the future practical application of graphene laminates.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 2","pages":"Pages 240-248"},"PeriodicalIF":17.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124000266","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene nanosheets have attracted great attention in the field of nanotechnology applications due to their extraordinary mechanical properties. While the structural defects such as gaps will occur during the preparation of graphene laminates, which will greatly damage the performance of the macroscopic material. Hence, a simple and promising mechanical compression method is used to improve the mechanical properties of graphene laminates. However, the roles of the densification process in the mechanical enhancement mechanism of graphene laminates are not clear. In our work, the mechanical enhancement of the compressed graphene (PG) laminates was investigated by the coarse-grained molecular dynamics simulation method. The tensile strength of PG model could be increased by increasing the graphene nanosheet size and the degree of compression in the system. And the model has the stronger van der Waals effect between graphene sheets due to the larger graphene size as well as the higher overlap ratio. Furthermore, two kinds of PG laminates were prepared by densification method, and the tensile strength was consistent with the upward trend of the PG model. This work provides an in-depth understanding on the mechanical enhancement of the densification process and lays a foundation for the future practical application of graphene laminates.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.