Truncations of operators in \({\mathcal {B}}({\mathcal {H}})\) and their preservers

IF 0.8 Q2 MATHEMATICS
Yanling Mao, Guoxing Ji
{"title":"Truncations of operators in \\({\\mathcal {B}}({\\mathcal {H}})\\) and their preservers","authors":"Yanling Mao,&nbsp;Guoxing Ji","doi":"10.1007/s43036-024-00332-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {H}\\)</span> be a complex Hilbert space with <span>\\(\\dim {\\mathcal {H}}\\ge 2\\)</span> and <span>\\(\\mathcal {B}(\\mathcal {H})\\)</span> be the algebra of all bounded linear operators on <span>\\(\\mathcal {H}\\)</span>. For <span>\\(A, B \\in \\mathcal {B}(\\mathcal {H})\\)</span>, <i>B</i> is called a truncation of <i>A</i>, denoted by <span>\\(B\\prec A\\)</span>, if <span>\\(B=PAQ\\)</span> for some projections <span>\\(P,Q\\in {\\mathcal {B}}({\\mathcal {H}})\\)</span>. And <i>B</i> is called a maximal truncation of <i>A</i> if <span>\\(B\\not =A\\)</span> and there is no other truncation <i>C</i> of <i>A</i> such that <span>\\(B\\prec C\\)</span>. We give necessary and sufficient conditions for <i>B</i> to be a maximal truncation of <i>A</i>. Using these characterizations, we determine structures of all bijections preserving truncations of operators in both directions on <span>\\(\\mathcal {B}(\\mathcal {H})\\)</span>.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00332-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathcal {H}\) be a complex Hilbert space with \(\dim {\mathcal {H}}\ge 2\) and \(\mathcal {B}(\mathcal {H})\) be the algebra of all bounded linear operators on \(\mathcal {H}\). For \(A, B \in \mathcal {B}(\mathcal {H})\), B is called a truncation of A, denoted by \(B\prec A\), if \(B=PAQ\) for some projections \(P,Q\in {\mathcal {B}}({\mathcal {H}})\). And B is called a maximal truncation of A if \(B\not =A\) and there is no other truncation C of A such that \(B\prec C\). We give necessary and sufficient conditions for B to be a maximal truncation of A. Using these characterizations, we determine structures of all bijections preserving truncations of operators in both directions on \(\mathcal {B}(\mathcal {H})\).

$${mathcal {B}}({\mathcal {H}})$$中算子的截断及其保值器
让\(\mathcal {H}\)是一个复希尔伯特空间,有\(\dim {mathcal {H}\ge 2\) 和\(\mathcal {B}(\mathcal {H})\)是\(\mathcal {H}\)上所有有界线性算子的代数。)对于 \(A, B \in \mathcal {B}(\mathcal {H})\), 如果 \(B=PAQ\) 对于某些投影 \(P,Q\in {\mathcal {B}}({\mathcal {H}})\),B 被称为 A 的截断,用 \(B\prec A\) 表示。如果(B不=A)并且没有其他A的截断C使得(B先于C),那么B就是A的最大截断。我们给出了 B 成为 A 的最大截断的必要条件和充分条件。利用这些特征,我们确定了在\(\mathcal {B}(\mathcal {H})\)上所有保留算子双向截断的双射的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信