Dewi Sartika , Denny Widhiyanuriyawan , Agung Sugeng Widodo , Purnami , I.N.G Wardana
{"title":"The role of graphene Oxide’s aromatic rings in activated carbon made from banana leaves (ACBL) and Fe3O4 in hydrogen production","authors":"Dewi Sartika , Denny Widhiyanuriyawan , Agung Sugeng Widodo , Purnami , I.N.G Wardana","doi":"10.1016/j.crcon.2024.100239","DOIUrl":null,"url":null,"abstract":"<div><div>Fe<sub>3</sub>O<sub>4</sub> is an internal magnet that can work as a medium for the electrolyte solution in electrochemical hydrogen production to facilitate electron movement. When Fe<sub>3</sub>O<sub>4</sub> is combined with activated carbon made from banana leaves (ACBL), electron transfer occurs between the ACBL aromatic ring and Fe<sup>3+</sup> ions from solved Fe<sub>3</sub>O<sub>4</sub>, which increases the solution’s conductivity and finally produces more hydrogen. ACBL is a biomass catalyst used as a free parameter to increase the Fe<sub>3</sub>O<sub>4</sub> magnetic field in the solution. The Fe<sub>3</sub>O<sub>4</sub> was synthesized using the coprecipitation method, while ACBL was obtained through an activation process to produce graphene oxide. Graphene oxide in ACBL was characterized using Scanning Electron Microscopy (SEM) EDX, Fourier Transform Infra-Red (FTIR), Brunauer, Emmett, and Teller (BET), and TEM (Transmission Electron Microscopy). BET was used to determine the surface area of ACBL. Hydrogen was produced using the electrolysis method. The SEM results showed that the elemental content of graphene oxide in ACBL was 72.47 %. The graphene oxide in ACBL had a positive charge represented by a bright color on the sample surface. The positive charge was due to the FTIR O-H and C-O groups working with Fe<sub>3</sub>O<sub>4</sub>. BET analysis showed that the average pore diameter of ACBL was 1.68 nm. The largest hydrogen production results were obtained at ACBL 200 mesh, which was 15.5 ml. ACBL from abundant biomass has magnetic and electrical potential within its aromatic ring. As the aromatic ring interacts with the magnetic field of Fe<sub>3</sub>O<sub>4</sub>, the electromagnetic field of the solution is strengthened. As a result, hydrogen production increases.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 1","pages":"Article 100239"},"PeriodicalIF":6.4000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913324000280","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Fe3O4 is an internal magnet that can work as a medium for the electrolyte solution in electrochemical hydrogen production to facilitate electron movement. When Fe3O4 is combined with activated carbon made from banana leaves (ACBL), electron transfer occurs between the ACBL aromatic ring and Fe3+ ions from solved Fe3O4, which increases the solution’s conductivity and finally produces more hydrogen. ACBL is a biomass catalyst used as a free parameter to increase the Fe3O4 magnetic field in the solution. The Fe3O4 was synthesized using the coprecipitation method, while ACBL was obtained through an activation process to produce graphene oxide. Graphene oxide in ACBL was characterized using Scanning Electron Microscopy (SEM) EDX, Fourier Transform Infra-Red (FTIR), Brunauer, Emmett, and Teller (BET), and TEM (Transmission Electron Microscopy). BET was used to determine the surface area of ACBL. Hydrogen was produced using the electrolysis method. The SEM results showed that the elemental content of graphene oxide in ACBL was 72.47 %. The graphene oxide in ACBL had a positive charge represented by a bright color on the sample surface. The positive charge was due to the FTIR O-H and C-O groups working with Fe3O4. BET analysis showed that the average pore diameter of ACBL was 1.68 nm. The largest hydrogen production results were obtained at ACBL 200 mesh, which was 15.5 ml. ACBL from abundant biomass has magnetic and electrical potential within its aromatic ring. As the aromatic ring interacts with the magnetic field of Fe3O4, the electromagnetic field of the solution is strengthened. As a result, hydrogen production increases.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.