Integrating convolutional neural networks for improved software engineering: A Collaborative and unbalanced data Perspective

Mohammadreza Nehzati
{"title":"Integrating convolutional neural networks for improved software engineering: A Collaborative and unbalanced data Perspective","authors":"Mohammadreza Nehzati","doi":"10.1016/j.memori.2024.100106","DOIUrl":null,"url":null,"abstract":"<div><p>This study pioneers the tailored application of Convolutional Neural Networks (CNNs) for addressing the challenge of unbalanced data in software engineering, a relatively unexplored domain for CNN utilization. Unlike conventional methods, our framework demonstrates a significant precision uplift of up to 15% in software classification tasks, specifically enhancing minority class sample accuracy. This research not only delineates a novel CNN-based approach that outperforms traditional data balancing techniques but also underscores the strategic integration of AI to bolster software engineering processes. By pinpointing the ethical implications, our findings advocate for a conscientious adoption of AI, ensuring software development advances equitably and efficiently.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"8 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773064624000082/pdfft?md5=42835d178c5411492a9767c94338cbaa&pid=1-s2.0-S2773064624000082-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064624000082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study pioneers the tailored application of Convolutional Neural Networks (CNNs) for addressing the challenge of unbalanced data in software engineering, a relatively unexplored domain for CNN utilization. Unlike conventional methods, our framework demonstrates a significant precision uplift of up to 15% in software classification tasks, specifically enhancing minority class sample accuracy. This research not only delineates a novel CNN-based approach that outperforms traditional data balancing techniques but also underscores the strategic integration of AI to bolster software engineering processes. By pinpointing the ethical implications, our findings advocate for a conscientious adoption of AI, ensuring software development advances equitably and efficiently.

整合卷积神经网络以改进软件工程:协作和非平衡数据视角
这项研究开创了卷积神经网络(CNN)的定制应用,以应对软件工程中不平衡数据带来的挑战,这是 CNN 应用领域中一个相对尚未开发的领域。与传统方法不同,我们的框架在软件分类任务中展示了高达 15% 的显著精度提升,特别是提高了少数类别样本的精度。这项研究不仅描述了一种基于 CNN 的新方法,其性能优于传统的数据平衡技术,而且还强调了将人工智能战略性地整合到软件工程流程中的重要性。我们的研究结果指出了人工智能的伦理意义,倡导认真采用人工智能,确保软件开发公平、高效地向前发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信