On the Carathéodory–Schur interpolation problem over quaternions

IF 0.8 Q2 MATHEMATICS
Vladimir Bolotnikov
{"title":"On the Carathéodory–Schur interpolation problem over quaternions","authors":"Vladimir Bolotnikov","doi":"10.1007/s43036-024-00329-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the quaternion version of the Toeplitz matrix extension problem with prescribed number of negative eigenvalues. The positive semidefinite case is closely related to the Carathéodory–Schur interpolation problem (<b>CSP</b>) in the Schur class <span>\\(\\mathcal S_{{\\mathbb {H}}}\\)</span> and the Carathéodory class <span>\\({\\mathcal {C}}_{{\\mathbb {H}}}\\)</span> of slice-regular functions on the unit quaternionic ball <span>\\({\\mathbb {B}}\\)</span> that are, respectively, bounded by one in modulus and having positive real part in <span>\\({\\mathbb {B}}\\)</span>. Explicit linear fractional parametrization formulas with free Schur-class parameter for the solution set of the <b>CSP</b> (in the indeterminate case) are given. Carathéodory–Fejér extremal problem and Carathéodory theorem on uniform approximation of a Schur-class function by quaternion finite Blaschke products are also derived. The indefinite version of the Toeplitz extension problem is applied to solve the <b>CSP</b> in the quaternion generalized Schur class. The linear fractional parametrization of the solution set for the indefinite indeterminate problem still exists, but some parameters should be excluded. These excluded parameters and the corresponding “quasi-solutions\" are classified and discussed in detail.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00329-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the quaternion version of the Toeplitz matrix extension problem with prescribed number of negative eigenvalues. The positive semidefinite case is closely related to the Carathéodory–Schur interpolation problem (CSP) in the Schur class \(\mathcal S_{{\mathbb {H}}}\) and the Carathéodory class \({\mathcal {C}}_{{\mathbb {H}}}\) of slice-regular functions on the unit quaternionic ball \({\mathbb {B}}\) that are, respectively, bounded by one in modulus and having positive real part in \({\mathbb {B}}\). Explicit linear fractional parametrization formulas with free Schur-class parameter for the solution set of the CSP (in the indeterminate case) are given. Carathéodory–Fejér extremal problem and Carathéodory theorem on uniform approximation of a Schur-class function by quaternion finite Blaschke products are also derived. The indefinite version of the Toeplitz extension problem is applied to solve the CSP in the quaternion generalized Schur class. The linear fractional parametrization of the solution set for the indefinite indeterminate problem still exists, but some parameters should be excluded. These excluded parameters and the corresponding “quasi-solutions" are classified and discussed in detail.

关于四元数上的卡拉瑟奥多里-舒尔插值问题
我们考虑了具有规定负特征值数的托普利兹矩阵扩展问题的四元版本。正半有限的情况与单位四元球 \({\mathcal S_{\mathbb {H}}\) 上的切片正则函数的 Schur 类 \({\mathcal {C}}_{\mathbb {H}}\) 和 Carathéodory 类 \({\mathcal {C}}_{\mathbb {H}}\) 中的 Carathéodory-Schur 插值问题(CSP)密切相关、分别在模上以 1 为界且在\({\mathbb {B}}\) 上有正实部的函数。给出了 CSP 解集(在不确定情况下)具有自由舒尔类参数的明确线性分数参数化公式。此外,还推导了四元有限布拉什克积对舒尔类函数均匀逼近的 Carathéodory-Fejér 极值问题和 Carathéodory 定理。Toeplitz 扩展问题的不定版本被用于求解四元广义舒尔类中的 CSP。无限不确定问题解集的线性分数参数化仍然存在,但应排除一些参数。本文对这些被排除的参数和相应的 "准解 "进行了分类和详细讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信