Priyajit Mondal, T. Mahapatra, Rujda Parveen, B. Saha
{"title":"Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure","authors":"Priyajit Mondal, T. Mahapatra, Rujda Parveen, B. Saha","doi":"10.1166/jon.2024.2116","DOIUrl":null,"url":null,"abstract":"Numerical simulation of MHD double-diffusive mixed convection flow of different nanofluids in a trapezoidal enclosure is performed with an internal heat generation/absorption source inside the enclosure. The nondimensional momentum, heat and mass equations are solved numerically by\n using the finite difference method. The present study focused mainly on the increment of the rate of heat and mass transfer using internal heat generation or absorption sources inside a lid-driven trapezoidal cavity. Considering numerous governing parameters (Q = −5 to 5, Ha\n = 0 to 30, Ri = 0.01 to 100) the flow velosity, temperature and concentration profiles are calculated for various nanofluids. Graphs and numerical tables are utilized to examine how different physical entities affect the distribution of flow, temperature and concentration. It is noted\n that enhancing values of Ha reduces the mass and heat transfer rate. It is observed that heat generation/absorption significantly affect the heat transfer rate as internal heat generation source increases heat transmission rather than mass transfer. The involvement of heat generation/absorption\n source significantly affects the heat transfer rate. By considering Al2O3-water nanofluid, the solid volume percentage has an accelerating effect on the Nusselt and Sherwood numbers as compared to the other nanofluids in the study.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical simulation of MHD double-diffusive mixed convection flow of different nanofluids in a trapezoidal enclosure is performed with an internal heat generation/absorption source inside the enclosure. The nondimensional momentum, heat and mass equations are solved numerically by
using the finite difference method. The present study focused mainly on the increment of the rate of heat and mass transfer using internal heat generation or absorption sources inside a lid-driven trapezoidal cavity. Considering numerous governing parameters (Q = −5 to 5, Ha
= 0 to 30, Ri = 0.01 to 100) the flow velosity, temperature and concentration profiles are calculated for various nanofluids. Graphs and numerical tables are utilized to examine how different physical entities affect the distribution of flow, temperature and concentration. It is noted
that enhancing values of Ha reduces the mass and heat transfer rate. It is observed that heat generation/absorption significantly affect the heat transfer rate as internal heat generation source increases heat transmission rather than mass transfer. The involvement of heat generation/absorption
source significantly affects the heat transfer rate. By considering Al2O3-water nanofluid, the solid volume percentage has an accelerating effect on the Nusselt and Sherwood numbers as compared to the other nanofluids in the study.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.