Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY
Priyajit Mondal, T. Mahapatra, Rujda Parveen, B. Saha
{"title":"Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure","authors":"Priyajit Mondal, T. Mahapatra, Rujda Parveen, B. Saha","doi":"10.1166/jon.2024.2116","DOIUrl":null,"url":null,"abstract":"Numerical simulation of MHD double-diffusive mixed convection flow of different nanofluids in a trapezoidal enclosure is performed with an internal heat generation/absorption source inside the enclosure. The nondimensional momentum, heat and mass equations are solved numerically by\n using the finite difference method. The present study focused mainly on the increment of the rate of heat and mass transfer using internal heat generation or absorption sources inside a lid-driven trapezoidal cavity. Considering numerous governing parameters (Q = −5 to 5, Ha\n = 0 to 30, Ri = 0.01 to 100) the flow velosity, temperature and concentration profiles are calculated for various nanofluids. Graphs and numerical tables are utilized to examine how different physical entities affect the distribution of flow, temperature and concentration. It is noted\n that enhancing values of Ha reduces the mass and heat transfer rate. It is observed that heat generation/absorption significantly affect the heat transfer rate as internal heat generation source increases heat transmission rather than mass transfer. The involvement of heat generation/absorption\n source significantly affects the heat transfer rate. By considering Al2O3-water nanofluid, the solid volume percentage has an accelerating effect on the Nusselt and Sherwood numbers as compared to the other nanofluids in the study.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical simulation of MHD double-diffusive mixed convection flow of different nanofluids in a trapezoidal enclosure is performed with an internal heat generation/absorption source inside the enclosure. The nondimensional momentum, heat and mass equations are solved numerically by using the finite difference method. The present study focused mainly on the increment of the rate of heat and mass transfer using internal heat generation or absorption sources inside a lid-driven trapezoidal cavity. Considering numerous governing parameters (Q = −5 to 5, Ha = 0 to 30, Ri = 0.01 to 100) the flow velosity, temperature and concentration profiles are calculated for various nanofluids. Graphs and numerical tables are utilized to examine how different physical entities affect the distribution of flow, temperature and concentration. It is noted that enhancing values of Ha reduces the mass and heat transfer rate. It is observed that heat generation/absorption significantly affect the heat transfer rate as internal heat generation source increases heat transmission rather than mass transfer. The involvement of heat generation/absorption source significantly affects the heat transfer rate. By considering Al2O3-water nanofluid, the solid volume percentage has an accelerating effect on the Nusselt and Sherwood numbers as compared to the other nanofluids in the study.
梯形围护结构中不同纳米流体在 MHD 双扩散混合对流中的发热/吸热现象
对梯形围墙内不同纳米流体的 MHD 双扩散混合对流进行了数值模拟,围墙内有一个内部发热/吸热源。采用有限差分法对非一维动量、热量和质量方程进行了数值求解。本研究主要侧重于利用盖驱动梯形空腔内的内部发热源或吸收源提高传热和传质速率。考虑到众多控制参数(Q = -5 至 5,Ha = 0 至 30,Ri = 0.01 至 100),计算了各种纳米流体的流速、温度和浓度曲线。利用图表和数字表格来研究不同的物理实体如何影响流量、温度和浓度的分布。结果表明,增加 Ha 值会降低传质和传热速率。据观察,发热/吸热对传热速率的影响很大,因为内部发热源增加的是热传递而不是质量传递。发热源/吸热源的参与对传热速率有很大影响。通过考虑 Al2O3-水纳米流体,与研究中的其他纳米流体相比,固体体积百分比对努塞尔特数和舍伍德数有加速影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信