Marina Pérez-Capó , Antònia Obrador-Hevia , Diego de Miguel-Perez , Christian Rolfo
{"title":"Engineered extracellular vesicles for cancer drug delivery and therapeutics","authors":"Marina Pérez-Capó , Antònia Obrador-Hevia , Diego de Miguel-Perez , Christian Rolfo","doi":"10.1016/j.cophys.2024.100755","DOIUrl":null,"url":null,"abstract":"<div><p>The battle against cancer remains a formidable challenge despite ongoing efforts worldwide. Current treatments are limited, leading to increased interest in personalized approaches, including drug delivery via extracellular vesicles (EVs). EVs are lipid bilayer particles released by cells that play a crucial role in intercellular communication by transferring biological compounds. Recent preclinical studies have demonstrated that EVs are also effective delivery vehicles for other cargo, such as chemotherapeutic drugs, immunotherapeutic agents, or nucleic acid–based therapeutics with improved pharmacokinetics. This review focuses on the latest advances on EVs as drug carriers in cancer therapy, pointing out the current ongoing clinical trials testing the potential of molecules, such as interleukin-12, STING agonists, or KRAS-G12D small interfering RNA. The evolving landscape of EVs in targeted cancer therapeutics holds significant promise for developing safer, personalized, and cell-free therapies.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"39 ","pages":"Article 100755"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246886732400021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The battle against cancer remains a formidable challenge despite ongoing efforts worldwide. Current treatments are limited, leading to increased interest in personalized approaches, including drug delivery via extracellular vesicles (EVs). EVs are lipid bilayer particles released by cells that play a crucial role in intercellular communication by transferring biological compounds. Recent preclinical studies have demonstrated that EVs are also effective delivery vehicles for other cargo, such as chemotherapeutic drugs, immunotherapeutic agents, or nucleic acid–based therapeutics with improved pharmacokinetics. This review focuses on the latest advances on EVs as drug carriers in cancer therapy, pointing out the current ongoing clinical trials testing the potential of molecules, such as interleukin-12, STING agonists, or KRAS-G12D small interfering RNA. The evolving landscape of EVs in targeted cancer therapeutics holds significant promise for developing safer, personalized, and cell-free therapies.