Bound-state electrons synergy over photochromic high-crystalline C3N5 nanosheets in enhancing charge separation for photocatalytic H2 production

Yu Shen , Xin Du , Yuxing Shi , Loic Jiresse Nguetsa Kuate , Zhouze Chen , Cheng Zhu , Lei Tan , Feng Guo , Shijie Li , Weilong Shi
{"title":"Bound-state electrons synergy over photochromic high-crystalline C3N5 nanosheets in enhancing charge separation for photocatalytic H2 production","authors":"Yu Shen ,&nbsp;Xin Du ,&nbsp;Yuxing Shi ,&nbsp;Loic Jiresse Nguetsa Kuate ,&nbsp;Zhouze Chen ,&nbsp;Cheng Zhu ,&nbsp;Lei Tan ,&nbsp;Feng Guo ,&nbsp;Shijie Li ,&nbsp;Weilong Shi","doi":"10.1016/j.apmate.2024.100202","DOIUrl":null,"url":null,"abstract":"<div><p>Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and cost-effective solution to achieve a stable renewable energy supply. However, the sluggish kinetics of electron-hole pairs’ separation poses challenges in attaining satisfactory hydrogen production efficiency. Herein, we synthesized the exceptional performance of highly crystalline C<sub>3</sub>N<sub>5</sub> (HC–C<sub>3</sub>N<sub>5</sub>) nanosheet as a photocatalyst, demonstrating a remarkable hydrogen evolution rate of 3.01 ​mmol ​h<sup>−1</sup> ​g<sup>−1</sup>, which surpasses that of bulk C<sub>3</sub>N<sub>5</sub> (B–C<sub>3</sub>N<sub>5</sub>) by a factor of 3.27. Experimental and theoretical analyses reveal that HC-C<sub>3</sub>N<sub>5</sub> nanosheets exhibit intriguing macroscopic photoinduced color changes, effectively broadening the absorption spectrum and significantly enhancing the generation of excitons. Besides, the cyano groups in HC-C<sub>3</sub>N<sub>5</sub> efficiently captures and converts photoexcited electrons into bound states, thereby prolonging their lifetimes and effectively separating electrons and holes into catalytically active regions. This research provides valuable insights into the establishment of bound electronic states for developing efficient photocatalysts.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000332/pdfft?md5=f8a2554db749073890ffdbae68512abf&pid=1-s2.0-S2772834X24000332-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and cost-effective solution to achieve a stable renewable energy supply. However, the sluggish kinetics of electron-hole pairs’ separation poses challenges in attaining satisfactory hydrogen production efficiency. Herein, we synthesized the exceptional performance of highly crystalline C3N5 (HC–C3N5) nanosheet as a photocatalyst, demonstrating a remarkable hydrogen evolution rate of 3.01 ​mmol ​h−1 ​g−1, which surpasses that of bulk C3N5 (B–C3N5) by a factor of 3.27. Experimental and theoretical analyses reveal that HC-C3N5 nanosheets exhibit intriguing macroscopic photoinduced color changes, effectively broadening the absorption spectrum and significantly enhancing the generation of excitons. Besides, the cyano groups in HC-C3N5 efficiently captures and converts photoexcited electrons into bound states, thereby prolonging their lifetimes and effectively separating electrons and holes into catalytically active regions. This research provides valuable insights into the establishment of bound electronic states for developing efficient photocatalysts.

Abstract Image

光致变色高晶 C3N5 纳米片上的束缚态电子协同作用可提高光催化制取 H2 的电荷分离能力
太阳能驱动的水分裂光催化氢进化被认为是一种极具前景和成本效益的解决方案,可实现稳定的可再生能源供应。然而,电子-空穴对分离的缓慢动力学对获得令人满意的制氢效率提出了挑战。在此,我们合成了性能优异的高结晶 C3N5(HC-C3N5)纳米片作为光催化剂,其氢气进化率高达 3.01 mmol h-1 g-1,是块状 C3N5(B-C3N5)的 3.27 倍。实验和理论分析表明,HC-C3N5 纳米片在光诱导下表现出有趣的宏观颜色变化,有效拓宽了吸收光谱,并显著增强了激子的产生。此外,HC-C3N5 中的氰基还能有效捕获光激发电子并将其转化为束缚态,从而延长其寿命,并有效地将电子和空穴分离到催化活性区域。这项研究为建立束缚电子态以开发高效光催化剂提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信