Engineering the Metal-Support Interaction and Oxygen Vacancies on Ru@P-Fe/Fe3O4 Nanorods for Synergetic Enhanced Electrocatalytic Nitrate-to-Ammonia Conversion

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinhui Su, Ke Shi, Baocang Liu, Zichao Xi, Junchao Yu, Xuan Xu, Peng Jing, Rui Gao, Jun Zhang
{"title":"Engineering the Metal-Support Interaction and Oxygen Vacancies on Ru@P-Fe/Fe3O4 Nanorods for Synergetic Enhanced Electrocatalytic Nitrate-to-Ammonia Conversion","authors":"Jinhui Su,&nbsp;Ke Shi,&nbsp;Baocang Liu,&nbsp;Zichao Xi,&nbsp;Junchao Yu,&nbsp;Xuan Xu,&nbsp;Peng Jing,&nbsp;Rui Gao,&nbsp;Jun Zhang","doi":"10.1002/adfm.202401194","DOIUrl":null,"url":null,"abstract":"<p>Ruthenium (Ru) loaded catalysts show high activity and selectivity for ammonia (NH<sub>3</sub>) synthesis via electrochemical reduction of nitrate (NO<sub>3</sub><sup>−</sup>), but their practical application is still restricted by their high cost and insufficient stability. Herein, a multi-component electrocatalyst of Ru nanoclusters loaded on phosphorus-doped/phosphate-modified and oxygen vacancy (O<sub>V</sub>)-rich Fe/Fe<sub>3</sub>O<sub>4</sub> composite nanorods (Ru@P-Fe/Fe<sub>3</sub>O<sub>4</sub>) to synergistically promote electrocatalytic NO<sub>3</sub><sup>−</sup> reduction reaction (NO<sub>3</sub><sup>−</sup>RR)-to-NH<sub>3</sub> performance via strong metal-support interaction (SMSI) is reported. Impressively, the best Ru@P-Fe/Fe<sub>3</sub>O<sub>4</sub> catalyst exhibits outstanding NO<sub>3</sub><sup>−</sup>RR activity, selectivity, and durability in 0.1 M KNO<sub>3</sub> + 0.5 M KOH solution, with an NH<sub>3</sub> yield rate of 14.37 ± 0.21 mg<sub>NH3</sub> h<sup>−1</sup> cm<sup>−2</sup> (1710.71 ± 25 mg<sub>NH3</sub> h<sup>−1</sup> mg<sub>Ru</sub><sup>−1</sup>) at −0.75 V versus reversible hydrogen electrode (vs. RHE), an NH<sub>3</sub> Faradaic efficiency (FE) of 97.2% at −0.55 V vs. RHE, and a superior stability over 50 h, suppressing most of reported Fe-based and Ru-based electrocatalysts. The characterizations and theoretical calculations unveil that the SMSI between Ru nanoclusters and P-Fe/Fe<sub>3</sub>O<sub>4</sub> composite nanorods can promote the generation of O<sub>V</sub>, tune the electronic structure of Ru species, and stabilize Ru nanoclusters, thereby reducing the reaction energy barrier of NO<sub>3</sub><sup>−</sup>RR-to-NH<sub>3</sub>, inhibiting the competitive hydrogen evolution reaction, and boosting the NH<sub>3</sub> yield rate NH<sub>3</sub> FE, and stability.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202401194","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ruthenium (Ru) loaded catalysts show high activity and selectivity for ammonia (NH3) synthesis via electrochemical reduction of nitrate (NO3), but their practical application is still restricted by their high cost and insufficient stability. Herein, a multi-component electrocatalyst of Ru nanoclusters loaded on phosphorus-doped/phosphate-modified and oxygen vacancy (OV)-rich Fe/Fe3O4 composite nanorods (Ru@P-Fe/Fe3O4) to synergistically promote electrocatalytic NO3 reduction reaction (NO3RR)-to-NH3 performance via strong metal-support interaction (SMSI) is reported. Impressively, the best Ru@P-Fe/Fe3O4 catalyst exhibits outstanding NO3RR activity, selectivity, and durability in 0.1 M KNO3 + 0.5 M KOH solution, with an NH3 yield rate of 14.37 ± 0.21 mgNH3 h−1 cm−2 (1710.71 ± 25 mgNH3 h−1 mgRu−1) at −0.75 V versus reversible hydrogen electrode (vs. RHE), an NH3 Faradaic efficiency (FE) of 97.2% at −0.55 V vs. RHE, and a superior stability over 50 h, suppressing most of reported Fe-based and Ru-based electrocatalysts. The characterizations and theoretical calculations unveil that the SMSI between Ru nanoclusters and P-Fe/Fe3O4 composite nanorods can promote the generation of OV, tune the electronic structure of Ru species, and stabilize Ru nanoclusters, thereby reducing the reaction energy barrier of NO3RR-to-NH3, inhibiting the competitive hydrogen evolution reaction, and boosting the NH3 yield rate NH3 FE, and stability.

Abstract Image

设计 Ru@P-Fe/Fe3O4 纳米棒上的金属-支撑相互作用和氧空位,协同增强硝酸盐到氨的电催化转化能力
负载钌(Ru)的催化剂在通过电化学还原硝酸盐(NO3-)合成氨(NH3)方面表现出较高的活性和选择性,但其实际应用仍受到成本高和稳定性不足的限制。本文报告了一种在掺磷/磷酸盐改性和富氧空位(OV)Fe/Fe3O4 复合纳米棒(Ru@P-Fe/Fe3O4)上负载 Ru 纳米团簇的多组分电催化剂,通过强金属-支撑相互作用(SMSI)协同促进电催化 NO3- 还原反应(NO3-RR)转化为 NH3 的性能。令人印象深刻的是,最佳的 Ru@P-Fe/Fe3O4 催化剂在 0.1 M KNO3 + 0.5 M KOH 溶液中表现出卓越的 NO3-RR 活性、选择性和耐久性,在 -0.与可逆氢电极 (vs. RHE) 相比,在 -0.55 V 与 RHE 相比时,NH3 法拉第效率 (FE) 为 97.2%,并且在 50 小时内具有卓越的稳定性,抑制了大多数已报道的铁基和 Ru 基电催化剂。表征和理论计算揭示了 Ru 纳米团簇与 P-Fe3O4 复合纳米棒之间的 SMSI 能够促进 OV 的生成、调整 Ru 物种的电子结构并稳定 Ru 纳米团簇,从而降低 NO3-RR 转化为 NH3 的反应能垒,抑制竞争性氢进化反应,提高 NH3 产率 NH3 FE 和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信