{"title":"RNA Panel Sequencing Is an Effective Tool to Help Classify Splice Variants for Clinical Oncogenetic Diagnosis","authors":"Maud Privat, Flora Ponelle-Chachuat, Sandrine Viala, Nancy Uhrhammer, Mathis Lepage, Anne Cayre, Yannick Bidet, Yves-Jean Bignon, Mathilde Gay-Bellile, Mathias Cavaillé","doi":"10.1155/2024/4830045","DOIUrl":null,"url":null,"abstract":"<p>Routine gene panel analysis identifies pathogenic variants in clinically relevant genes. However, variants of unknown significance (VUSs) are commonly observed, many of which potentially have an impact on mRNA transcription and splicing. Several software programs attempt to predict the impact of variants on splicing and thus make it possible to select the variants for which it is important to study the effect on the transcripts. Transcript analysis is also necessary to show the tandem character of large duplications, and it can be useful for the search for deep intronic variants that are difficult to identify in a DNA panel. We analyzed 53 variants of unknown significance by targeted sequencing of 48 genes using RNA extracted from patient blood samples. RT-PCR and Sanger sequencing of patient mRNA or minigene monoallelic analysis was also carried out when necessary. For the 53 VUSs, 21 could be classified as likely neutral and 10 as pathogenic or likely pathogenic. Data are comprehensively presented for four variants: <i>PTEN</i> c.206+6T>G, <i>MLH1</i> c.791-489_791-20del, <i>BRCA2</i> c.68-8_68-7delinsAA, and <i>MSH2</i> c.(1076+1_1077-1)_(1276+1_1277-1)dup. These four examples illustrate the usefulness of blood RNA panel sequencing in clinical oncogenetics to help classify VUSs with predicted splice effects. It could also be useful for characterizing large duplications and for detecting deep intronic variants with an impact on expressed transcripts.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2024 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4830045","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Routine gene panel analysis identifies pathogenic variants in clinically relevant genes. However, variants of unknown significance (VUSs) are commonly observed, many of which potentially have an impact on mRNA transcription and splicing. Several software programs attempt to predict the impact of variants on splicing and thus make it possible to select the variants for which it is important to study the effect on the transcripts. Transcript analysis is also necessary to show the tandem character of large duplications, and it can be useful for the search for deep intronic variants that are difficult to identify in a DNA panel. We analyzed 53 variants of unknown significance by targeted sequencing of 48 genes using RNA extracted from patient blood samples. RT-PCR and Sanger sequencing of patient mRNA or minigene monoallelic analysis was also carried out when necessary. For the 53 VUSs, 21 could be classified as likely neutral and 10 as pathogenic or likely pathogenic. Data are comprehensively presented for four variants: PTEN c.206+6T>G, MLH1 c.791-489_791-20del, BRCA2 c.68-8_68-7delinsAA, and MSH2 c.(1076+1_1077-1)_(1276+1_1277-1)dup. These four examples illustrate the usefulness of blood RNA panel sequencing in clinical oncogenetics to help classify VUSs with predicted splice effects. It could also be useful for characterizing large duplications and for detecting deep intronic variants with an impact on expressed transcripts.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.