{"title":"Effect of Post-weld Heat Treatment on the Microstructure and Mechanical Properties of 2.25Cr-1Mo-0.25V Ultra-Thick Steel Plate","authors":"Yanyang Wu, Zongye Ding, Wenquan Lu, Jingchao Hou, Qiaodan Hu, Jianguo Li","doi":"10.1007/s40195-024-01676-2","DOIUrl":null,"url":null,"abstract":"<div><p>Ensuring the homogeneous and excellent mechanical properties of 2.25Cr-1Mo-0.25V ultra-thick steel plate is the key to the production of hydrogenation reactor equipment. Thus, it is required to understand the heterogeneity of microstructures and properties of ultra-thick plate after heat treatment. In this work, the effect of post-weld heat treatment (PWHT) on the strength, plasticity, toughness and microstructures of the 193-mm-thick steel plate was investigated, and the formation mechanism of heterogeneity was elucidated. The PWHT decreased the room- and high-temperature yield strength (YS) and ultimate tensile strength (UTS) of the steel plate after normalizing and tempering (NT), while the room- and high-temperature YS and UTS decreased from the surface to the center of 193-mm-thick steel plate. It was attributed to the enhanced decomposition of martensite–austenite (M–A) constituents and coarsening of grains and precipitated carbides.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01676-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring the homogeneous and excellent mechanical properties of 2.25Cr-1Mo-0.25V ultra-thick steel plate is the key to the production of hydrogenation reactor equipment. Thus, it is required to understand the heterogeneity of microstructures and properties of ultra-thick plate after heat treatment. In this work, the effect of post-weld heat treatment (PWHT) on the strength, plasticity, toughness and microstructures of the 193-mm-thick steel plate was investigated, and the formation mechanism of heterogeneity was elucidated. The PWHT decreased the room- and high-temperature yield strength (YS) and ultimate tensile strength (UTS) of the steel plate after normalizing and tempering (NT), while the room- and high-temperature YS and UTS decreased from the surface to the center of 193-mm-thick steel plate. It was attributed to the enhanced decomposition of martensite–austenite (M–A) constituents and coarsening of grains and precipitated carbides.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.