Dual Independent Rotor Axial Flux Induction Motor for Electric Vehicle Applications

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Alireza Hesari, Ahmad Darabi, Fazel Pourmirzaei Deylami
{"title":"Dual Independent Rotor Axial Flux Induction Motor for Electric Vehicle Applications","authors":"Alireza Hesari,&nbsp;Ahmad Darabi,&nbsp;Fazel Pourmirzaei Deylami","doi":"10.1049/2024/5594289","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This article proposes a dual independent rotor axial flux induction motor (DIR-AFIM) with two degrees of freedom as a propulsion motor for an electric vehicle (EV). The performance of this motor in different operating conditions of the vehicle is discussed and investigated. This motor has two rotors that are mechanically independent of each other, providing driving force for the EV separately and enabling the removal of any mechanical or electrical differential. The propulsion motor can play the role of differential and also reduce the cost and complexity of the entire propulsion system in some extent. The finite element modeling of the proposed motor has been performed and the performance characteristics have been evaluated in three operating scenarios: flat path, sloped path, and turning path, taking into account the dynamics of the vehicle. Additionally, the accuracy of the simulations and modeling has been confirmed by performing some practical tests on the prototype machine. The results show that the simulations and measurements are in good agreement and the proposed propulsion system can be a suitable option for lightweight electric vehicles.</p>\n </div>","PeriodicalId":48518,"journal":{"name":"IET Electrical Systems in Transportation","volume":"2024 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5594289","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Electrical Systems in Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/5594289","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a dual independent rotor axial flux induction motor (DIR-AFIM) with two degrees of freedom as a propulsion motor for an electric vehicle (EV). The performance of this motor in different operating conditions of the vehicle is discussed and investigated. This motor has two rotors that are mechanically independent of each other, providing driving force for the EV separately and enabling the removal of any mechanical or electrical differential. The propulsion motor can play the role of differential and also reduce the cost and complexity of the entire propulsion system in some extent. The finite element modeling of the proposed motor has been performed and the performance characteristics have been evaluated in three operating scenarios: flat path, sloped path, and turning path, taking into account the dynamics of the vehicle. Additionally, the accuracy of the simulations and modeling has been confirmed by performing some practical tests on the prototype machine. The results show that the simulations and measurements are in good agreement and the proposed propulsion system can be a suitable option for lightweight electric vehicles.

Abstract Image

用于电动汽车应用的双独立转子轴向磁通感应电机
本文提出了一种具有两个自由度的双独立转子轴向磁通感应电机(DIR-AFIM),作为电动汽车(EV)的推进电机。文章讨论并研究了该电机在车辆不同运行条件下的性能。这种电机有两个机械上相互独立的转子,可分别为电动汽车提供驱动力,并能消除任何机械或电气差分。该推进电机既能发挥差速器的作用,又能在一定程度上降低整个推进系统的成本和复杂性。考虑到车辆的动态特性,我们对所提出的电机进行了有限元建模,并在三种运行情况下对其性能特征进行了评估:平坦路径、倾斜路径和转弯路径。此外,还在原型机上进行了一些实际测试,以确认模拟和建模的准确性。结果表明,模拟和测量结果非常吻合,建议的推进系统可以作为轻型电动汽车的合适选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
4.30%
发文量
18
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信