{"title":"Self-assembled peptide nanotubes (SPNTs)/SnO2 nanocomposites for high-performance NO2 sensing at room temperature.","authors":"Yang Li, Lili Li, Zhihua Ying, Weichao Wu, Gaofeng Wang, Ranran Zhang","doi":"10.1088/1361-6528/ad3a6c","DOIUrl":null,"url":null,"abstract":"Nitrogen dioxide (NO2) is a major pollutant that poses significant risks to sustainable human life. As a result, a growing focus has been placed on the development of highly selective and sensitive gas sensors for NO2. Traditional cutting-edge non-organic NO2 gas detectors often necessitate stringent production conditions and potentially harmful materials, which are not environmentally friendly, and these shortcomings have limited their widespread practical use. To overcome these challenges, we synthesized self-assembled peptide nanotubes (SPNTs) through a molecular self-assembly process. The SPNTs were then combined with SnO2 in varying proportions to construct NO2 gas sensors. The design of this sensor ensured efficient electron transfer and leverage the extensive surface area of the SPNTs for enhanced gas adsorption and the effective dispersion of SnO2 nanoparticles. Notably, the performance of the sensor, including its sensitivity, response time, and recovery rate, along with a lower detection threshold, could be finely tuned by varying the SPNTs content. This approach illustrated the potential of bioinspired methodologies, using peptide self-assemblies, to develop integrated sensors for pollutant detection, providing a significant development in environmentally conscious sensor technology.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"83 5‐6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad3a6c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen dioxide (NO2) is a major pollutant that poses significant risks to sustainable human life. As a result, a growing focus has been placed on the development of highly selective and sensitive gas sensors for NO2. Traditional cutting-edge non-organic NO2 gas detectors often necessitate stringent production conditions and potentially harmful materials, which are not environmentally friendly, and these shortcomings have limited their widespread practical use. To overcome these challenges, we synthesized self-assembled peptide nanotubes (SPNTs) through a molecular self-assembly process. The SPNTs were then combined with SnO2 in varying proportions to construct NO2 gas sensors. The design of this sensor ensured efficient electron transfer and leverage the extensive surface area of the SPNTs for enhanced gas adsorption and the effective dispersion of SnO2 nanoparticles. Notably, the performance of the sensor, including its sensitivity, response time, and recovery rate, along with a lower detection threshold, could be finely tuned by varying the SPNTs content. This approach illustrated the potential of bioinspired methodologies, using peptide self-assemblies, to develop integrated sensors for pollutant detection, providing a significant development in environmentally conscious sensor technology.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.