{"title":"Feature Engineering-Assisted Drug Repurposing on Disease-Drug Transcriptome Profiles in Gastric Cancer.","authors":"K. K. Kırboğa, M. Rudrapal","doi":"10.1089/adt.2023.141","DOIUrl":null,"url":null,"abstract":"Gastric cancer is one of the most common and deadly types of cancer in the world. To develop new biomarkers and drugs to diagnose and treat this cancer, it is necessary to identify the differences between the transcriptome profiles of gastric cancer and healthy individuals, identify critical genes associated with these differences, and make potential drug predictions based on these genes. In this study, using two gene expression datasets related to gastric cancer (GSE19826 and GSE79973), 200 genes that were ready for machine learning were selected, and their expression levels were analyzed. The best 100 genes for the model were chosen with the permutation feature importance method, and central genes, such as SCARB1, ETV3, SPATA17, FAM167A-AS1, and MTBP, which were shown to be associated with gastric cancer, were identified. Then, using the drug repurposing method with the Connectivity Map CLUE Query tools, potential drugs such as Forskolin, Gestrinone, Cediranib, Apicidine, and Everolimus, which showed a highly negative correlation with the expression levels of the selected genes, were identified. This study provides a method to develop new approaches to diagnosing and treating gastric cancer by comparing the transcriptome profiles of patients gastric cancer and performing a feature engineering-assisted drug repurposing analysis based on cancer data.","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2023.141","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gastric cancer is one of the most common and deadly types of cancer in the world. To develop new biomarkers and drugs to diagnose and treat this cancer, it is necessary to identify the differences between the transcriptome profiles of gastric cancer and healthy individuals, identify critical genes associated with these differences, and make potential drug predictions based on these genes. In this study, using two gene expression datasets related to gastric cancer (GSE19826 and GSE79973), 200 genes that were ready for machine learning were selected, and their expression levels were analyzed. The best 100 genes for the model were chosen with the permutation feature importance method, and central genes, such as SCARB1, ETV3, SPATA17, FAM167A-AS1, and MTBP, which were shown to be associated with gastric cancer, were identified. Then, using the drug repurposing method with the Connectivity Map CLUE Query tools, potential drugs such as Forskolin, Gestrinone, Cediranib, Apicidine, and Everolimus, which showed a highly negative correlation with the expression levels of the selected genes, were identified. This study provides a method to develop new approaches to diagnosing and treating gastric cancer by comparing the transcriptome profiles of patients gastric cancer and performing a feature engineering-assisted drug repurposing analysis based on cancer data.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts