{"title":"Feature Engineering-Assisted Drug Repurposing on Disease-Drug Transcriptome Profiles in Gastric Cancer.","authors":"K. K. Kırboğa, M. Rudrapal","doi":"10.1089/adt.2023.141","DOIUrl":null,"url":null,"abstract":"Gastric cancer is one of the most common and deadly types of cancer in the world. To develop new biomarkers and drugs to diagnose and treat this cancer, it is necessary to identify the differences between the transcriptome profiles of gastric cancer and healthy individuals, identify critical genes associated with these differences, and make potential drug predictions based on these genes. In this study, using two gene expression datasets related to gastric cancer (GSE19826 and GSE79973), 200 genes that were ready for machine learning were selected, and their expression levels were analyzed. The best 100 genes for the model were chosen with the permutation feature importance method, and central genes, such as SCARB1, ETV3, SPATA17, FAM167A-AS1, and MTBP, which were shown to be associated with gastric cancer, were identified. Then, using the drug repurposing method with the Connectivity Map CLUE Query tools, potential drugs such as Forskolin, Gestrinone, Cediranib, Apicidine, and Everolimus, which showed a highly negative correlation with the expression levels of the selected genes, were identified. This study provides a method to develop new approaches to diagnosing and treating gastric cancer by comparing the transcriptome profiles of patients gastric cancer and performing a feature engineering-assisted drug repurposing analysis based on cancer data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"21 6","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2023.141","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gastric cancer is one of the most common and deadly types of cancer in the world. To develop new biomarkers and drugs to diagnose and treat this cancer, it is necessary to identify the differences between the transcriptome profiles of gastric cancer and healthy individuals, identify critical genes associated with these differences, and make potential drug predictions based on these genes. In this study, using two gene expression datasets related to gastric cancer (GSE19826 and GSE79973), 200 genes that were ready for machine learning were selected, and their expression levels were analyzed. The best 100 genes for the model were chosen with the permutation feature importance method, and central genes, such as SCARB1, ETV3, SPATA17, FAM167A-AS1, and MTBP, which were shown to be associated with gastric cancer, were identified. Then, using the drug repurposing method with the Connectivity Map CLUE Query tools, potential drugs such as Forskolin, Gestrinone, Cediranib, Apicidine, and Everolimus, which showed a highly negative correlation with the expression levels of the selected genes, were identified. This study provides a method to develop new approaches to diagnosing and treating gastric cancer by comparing the transcriptome profiles of patients gastric cancer and performing a feature engineering-assisted drug repurposing analysis based on cancer data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.