{"title":"Analysis of Subsonic/Hypersonic Aerodynamics of a High-Speed Aircraft","authors":"Giuseppe Pezzella, Antonio Viviani","doi":"10.1007/s42496-024-00211-x","DOIUrl":null,"url":null,"abstract":"<div><p>Unmanned flying-test bed aircraft are fundamental to experimentally prove and validate next-generation high-speed technologies, such as aeroshapes design, thermal protection materials, flight mechanics, and guidance–navigation–control in real flight conditions. During the test, the aircraft will encounter realistic operative conditions to assess the accuracy of new design choices and solutions. In this framework, the paper focuses on the longitudinal aerodynamic analysis of an experimental aircraft, with a spatuled forebody aeroshape, from subsonic up to hypersonic speeds. Computational flowfield analyses are carried out at several angles of attack ranging from 0 to 15º and for Mach numbers from 0.1 to 7. Results are reported in detail and discussed in the paper.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"103 4","pages":"351 - 362"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-024-00211-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned flying-test bed aircraft are fundamental to experimentally prove and validate next-generation high-speed technologies, such as aeroshapes design, thermal protection materials, flight mechanics, and guidance–navigation–control in real flight conditions. During the test, the aircraft will encounter realistic operative conditions to assess the accuracy of new design choices and solutions. In this framework, the paper focuses on the longitudinal aerodynamic analysis of an experimental aircraft, with a spatuled forebody aeroshape, from subsonic up to hypersonic speeds. Computational flowfield analyses are carried out at several angles of attack ranging from 0 to 15º and for Mach numbers from 0.1 to 7. Results are reported in detail and discussed in the paper.