Raphael Scharf, Mitchell Maier, M. Pusterhofer, Florian Grün
{"title":"A Comprehensive Numerical Study of a Wedge-Shaped Textured Convergent Oil Film Gap","authors":"Raphael Scharf, Mitchell Maier, M. Pusterhofer, Florian Grün","doi":"10.3390/lubricants12040121","DOIUrl":null,"url":null,"abstract":"The modification of surface geometries to reduce friction is an omnipresent topic of research. In nature, different low-friction surfaces, such as fish skins, exist. To transfer this knowledge to technical applications, for example, to journal or plain bearings, many numerical and experimental studies of textured surfaces have been performed. In this work, the influence of the geometric parameters (texture length , width , angle and start position of a wedge-shaped texture on three different convergent oil film gaps was analyzed in full-film lubrication and compared with untextured oil film gaps. With the aid of a CFD (computational fluid dynamics) model, a comprehensive variation study was conducted, and the best-performing wedge-shaped texture was determined. The results show that an open texture at the inlet provides the largest improvement. Furthermore, it can be observed that the optimal relative texture width and absolute inlet height for the three investigated oil film gaps are similar. In contrast to the volume flow of the untextured geometry, the volume flow of the textured one is significantly higher, especially that perpendicular to the movement direction.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12040121","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The modification of surface geometries to reduce friction is an omnipresent topic of research. In nature, different low-friction surfaces, such as fish skins, exist. To transfer this knowledge to technical applications, for example, to journal or plain bearings, many numerical and experimental studies of textured surfaces have been performed. In this work, the influence of the geometric parameters (texture length , width , angle and start position of a wedge-shaped texture on three different convergent oil film gaps was analyzed in full-film lubrication and compared with untextured oil film gaps. With the aid of a CFD (computational fluid dynamics) model, a comprehensive variation study was conducted, and the best-performing wedge-shaped texture was determined. The results show that an open texture at the inlet provides the largest improvement. Furthermore, it can be observed that the optimal relative texture width and absolute inlet height for the three investigated oil film gaps are similar. In contrast to the volume flow of the untextured geometry, the volume flow of the textured one is significantly higher, especially that perpendicular to the movement direction.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding