{"title":"Physicochemical, rheological and structural properties of selected cultivars of wheat (T. aestivum)","authors":"Jyoti Narwal, Ritika B. Yadav, Baljeet S. Yadav","doi":"10.1007/s00217-024-04511-1","DOIUrl":null,"url":null,"abstract":"<div><p>The characterization of the physicochemical properties of wheat flour and the rheological characteristics of dough is necessary to predict processing behavior, functionality, and end-product development. Differential scanning calorimetry, pasting analysis, FTIR spectroscopy, X-ray diffraction study, and rheological measurements were used to analyze the wheat flour of different cultivars. The thermal and pasting parameters varied significantly (<i>p</i> ≤ 0.05) among the cultivars and showed a negative correlation with amylose content. The FTIR spectra of all wheat flour showed a weaker intensity of absorption peak at 1540 cm<sup>–1</sup> and 1420 cm<sup>–1</sup> associated with amide II and amide III bands. The relative crystallinity showed a significant positive correlation with HPV and CPV (hot and cold paste viscosities) and a negative correlation with amylose content. The rheological characteristics were analyzed by amplitude sweep (AS), frequency sweep (FS), and creep-recovery test of dough. The AS/FS results showed a weak gel-like structure reflecting a more elastic nature than viscous behavior. <i>G</i>ʹ and <i>G</i>ʹʹ positively correlated with pasting viscosities i.e., peak (PV), CPV, and breakdown viscosities. Viscoelastic compliance (J1) of recovery showed a significant negative correlation with textural parameters, i.e., chewiness and gumminess. Principal component analysis (PCA) reflected 71% of the cumulative variance and PC1 accounted for maximum variance (34%) with PV, HPV, CPV, <i>T</i><sub>p</sub> (peak temperature), 1047/1022 cm<sup>–1</sup>, crystallinity, and G’ as the main factors.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":549,"journal":{"name":"European Food Research and Technology","volume":"250 7","pages":"2025 - 2038"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Food Research and Technology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s00217-024-04511-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The characterization of the physicochemical properties of wheat flour and the rheological characteristics of dough is necessary to predict processing behavior, functionality, and end-product development. Differential scanning calorimetry, pasting analysis, FTIR spectroscopy, X-ray diffraction study, and rheological measurements were used to analyze the wheat flour of different cultivars. The thermal and pasting parameters varied significantly (p ≤ 0.05) among the cultivars and showed a negative correlation with amylose content. The FTIR spectra of all wheat flour showed a weaker intensity of absorption peak at 1540 cm–1 and 1420 cm–1 associated with amide II and amide III bands. The relative crystallinity showed a significant positive correlation with HPV and CPV (hot and cold paste viscosities) and a negative correlation with amylose content. The rheological characteristics were analyzed by amplitude sweep (AS), frequency sweep (FS), and creep-recovery test of dough. The AS/FS results showed a weak gel-like structure reflecting a more elastic nature than viscous behavior. Gʹ and Gʹʹ positively correlated with pasting viscosities i.e., peak (PV), CPV, and breakdown viscosities. Viscoelastic compliance (J1) of recovery showed a significant negative correlation with textural parameters, i.e., chewiness and gumminess. Principal component analysis (PCA) reflected 71% of the cumulative variance and PC1 accounted for maximum variance (34%) with PV, HPV, CPV, Tp (peak temperature), 1047/1022 cm–1, crystallinity, and G’ as the main factors.
期刊介绍:
The journal European Food Research and Technology publishes state-of-the-art research papers and review articles on fundamental and applied food research. The journal''s mission is the fast publication of high quality papers on front-line research, newest techniques and on developing trends in the following sections:
-chemistry and biochemistry-
technology and molecular biotechnology-
nutritional chemistry and toxicology-
analytical and sensory methodologies-
food physics.
Out of the scope of the journal are:
- contributions which are not of international interest or do not have a substantial impact on food sciences,
- submissions which comprise merely data collections, based on the use of routine analytical or bacteriological methods,
- contributions reporting biological or functional effects without profound chemical and/or physical structure characterization of the compound(s) under research.