Study on Cage Stability of Solid-Lubricated Angular Contact Ball Bearings in an Ultra-Low Temperature Environment

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Bing Su, Han Li, Guangtao Zhang, Fengbo Liu, Yongcun Cui
{"title":"Study on Cage Stability of Solid-Lubricated Angular Contact Ball Bearings in an Ultra-Low Temperature Environment","authors":"Bing Su, Han Li, Guangtao Zhang, Fengbo Liu, Yongcun Cui","doi":"10.3390/lubricants12040124","DOIUrl":null,"url":null,"abstract":"In the ultra-low temperature environment, the material properties of the bearing change, which puts forward higher requirements for the dynamic performance of the bearing cage. The bearings operating in ultra-low temperature environments commonly use solid lubricants. This study first focused on measuring the traction coefficients of molybdenum disulfide (MoS2) solid lubricant in a nitrogen atmosphere, and the Gupta fitting model is constructed to derive the traction equation. Subsequently, the dynamic differential equation of angular contact ball bearings was established, and the stability of the bearing cage in a nitrogen environment was simulated and analyzed based on the dynamic model. The accuracy of the simulation model was verified through comparison. The results show that less than 10% of errors exist between the experimental data and the traction curve fitted by the Gupta model, and the stability of the cage is closely related to operating parameters and bearing structure parameters. Cage stability increases with axial load but decreases with radial load. The cage stability is optimal when the radial internal clearance of the bearing is approximately 0.06 mm. When other conditions remain unchanged and the ratio of the cage pocket hole gap to the cage guide surface gap is 0.2, the cage stability is the best. The research results will provide a foundation for the design and application of solid-lubricated angular contact ball bearings in ultra-low temperature environments.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12040124","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the ultra-low temperature environment, the material properties of the bearing change, which puts forward higher requirements for the dynamic performance of the bearing cage. The bearings operating in ultra-low temperature environments commonly use solid lubricants. This study first focused on measuring the traction coefficients of molybdenum disulfide (MoS2) solid lubricant in a nitrogen atmosphere, and the Gupta fitting model is constructed to derive the traction equation. Subsequently, the dynamic differential equation of angular contact ball bearings was established, and the stability of the bearing cage in a nitrogen environment was simulated and analyzed based on the dynamic model. The accuracy of the simulation model was verified through comparison. The results show that less than 10% of errors exist between the experimental data and the traction curve fitted by the Gupta model, and the stability of the cage is closely related to operating parameters and bearing structure parameters. Cage stability increases with axial load but decreases with radial load. The cage stability is optimal when the radial internal clearance of the bearing is approximately 0.06 mm. When other conditions remain unchanged and the ratio of the cage pocket hole gap to the cage guide surface gap is 0.2, the cage stability is the best. The research results will provide a foundation for the design and application of solid-lubricated angular contact ball bearings in ultra-low temperature environments.
超低温环境下固体润滑角接触球轴承保持架稳定性研究
在超低温环境下,轴承的材料特性会发生变化,这就对轴承保持架的动态性能提出了更高的要求。在超低温环境下工作的轴承通常使用固体润滑剂。本研究首先重点测量了二硫化钼(MoS2)固体润滑剂在氮气环境中的牵引系数,并构建了 Gupta 拟合模型,推导出牵引方程。随后,建立了角接触球轴承的动态微分方程,并根据动态模型模拟和分析了轴承保持架在氮气环境中的稳定性。通过对比验证了仿真模型的准确性。结果表明,实验数据与 Gupta 模型拟合的牵引曲线之间的误差小于 10%,保持架的稳定性与工作参数和轴承结构参数密切相关。保持架稳定性随轴向载荷的增加而增加,但随径向载荷的增加而减小。当轴承的径向内部游隙约为 0.06 mm 时,保持架的稳定性最佳。当其他条件不变,保持架袖孔间隙与保持架导向面间隙之比为 0.2 时,保持架稳定性最佳。研究成果将为超低温环境下固体润滑角接触球轴承的设计和应用奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信