{"title":"Utilizing waveform synthesis in harmonic oscillator seasonal trend model for short- and long-term streamflow drought modeling and forecasting","authors":"K. Raczyński, J. Dyer","doi":"10.2166/hydro.2024.229","DOIUrl":null,"url":null,"abstract":"\n This study introduces an improved version of the harmonic oscillator seasonal trend (HOST) model framework to accurately simulate medium- and long-term changes in extreme events, focusing on streamflow droughts in the Mobile River catchment. Performance of the model relative to the initial framework was enhanced through the inclusion of new mathematical models and waveform synthesis. The updated framework successfully captures long-term and seasonal patterns with a Kling–Gupta efficiency exceeding 0.5 for seasonal fluctuations and over 0.9 for trends. The best-fit model explains around 98% of long-term and approximately 55% of seasonal variance. Test sets show slightly lower accuracies, with about 20% of nodes underperforming due to the absence of drought during the test phase resulting in false-positive model forecasts. The newly developed weighted occurrence classification outperforms the binary classification occurrence model. In addition, application of an automatic period multiplier for decomposition using the seasonal trend decomposition using LOESS method improves test dataset performance and reduces false-positive forecasts. The improved framework provides valuable insights for extreme flow distribution, offering potential for improved water management planning, and the combination of the HOST model with physical models can address short-term drivers of extreme events, enhancing drought occurrence forecasting and water resource management strategies.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"9 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces an improved version of the harmonic oscillator seasonal trend (HOST) model framework to accurately simulate medium- and long-term changes in extreme events, focusing on streamflow droughts in the Mobile River catchment. Performance of the model relative to the initial framework was enhanced through the inclusion of new mathematical models and waveform synthesis. The updated framework successfully captures long-term and seasonal patterns with a Kling–Gupta efficiency exceeding 0.5 for seasonal fluctuations and over 0.9 for trends. The best-fit model explains around 98% of long-term and approximately 55% of seasonal variance. Test sets show slightly lower accuracies, with about 20% of nodes underperforming due to the absence of drought during the test phase resulting in false-positive model forecasts. The newly developed weighted occurrence classification outperforms the binary classification occurrence model. In addition, application of an automatic period multiplier for decomposition using the seasonal trend decomposition using LOESS method improves test dataset performance and reduces false-positive forecasts. The improved framework provides valuable insights for extreme flow distribution, offering potential for improved water management planning, and the combination of the HOST model with physical models can address short-term drivers of extreme events, enhancing drought occurrence forecasting and water resource management strategies.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.