{"title":"Hydrosedimentology of paired watersheds with clayey soils under cattle grazing and no-tillage cropping: LISEM calibration and validation","authors":"É. D. Ebling, I. Althoff, J. M. Reichert","doi":"10.1007/s13762-024-05603-x","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrosedimentalogical models contribute to management of water resources, provided they are based on robust monitoring and calibration–validation strategies. The Limburg Soil Erosion Model (LISEM) properly represents runoff and sediment yield from watersheds with deep, clayey, weathered soils intensely occupied with grain production and dairy farming. Runoff and sediment yield in this agricultural environment have significant economic and off-site ecological importance, as the watersheds are connected to a large reservoir responsible for energy production and water supply. The objective of the study was to test whether LISEM is efficient in runoff and sediment yield modeling (calibration and validation) in paired watersheds with clayey weathered soils, under dairy cattle grazing and no-tillage grain production. The LISEM adequately represented runoff and erosion processes in the calibration phase (2018–2019), with Nash and Sutcliffe efficiency coefficient up to 0.94 and 0.92 for surface runoff, and 0.89 and 0.88 for sediment yield, respectively, for NW and SW watersheds. Some model parameters required significant adjustments, e.g., Ksat at 78.5% and 49.1%, initial soil moisture at 5.5% and 2.5%, soil cohesion at 24.1% and 4.6%, and aggregate stability at 21.4% and 4.6%, respectively for NW and SW watersheds. During the validation period (2020–2021), the model exhibited constraints in adequately representing the hydrosedimentological processes, with only a few rainfall events showing accurate results. Thus, for the utilization of a validated LISEM in future climate scenarios, the model still requires thorough scrutiny of the equations governing hydrology and erosion processes, along with continued monitoring and further model parameterization.</p></div>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"21 15","pages":"9481 - 9500"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13762-024-05603-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrosedimentalogical models contribute to management of water resources, provided they are based on robust monitoring and calibration–validation strategies. The Limburg Soil Erosion Model (LISEM) properly represents runoff and sediment yield from watersheds with deep, clayey, weathered soils intensely occupied with grain production and dairy farming. Runoff and sediment yield in this agricultural environment have significant economic and off-site ecological importance, as the watersheds are connected to a large reservoir responsible for energy production and water supply. The objective of the study was to test whether LISEM is efficient in runoff and sediment yield modeling (calibration and validation) in paired watersheds with clayey weathered soils, under dairy cattle grazing and no-tillage grain production. The LISEM adequately represented runoff and erosion processes in the calibration phase (2018–2019), with Nash and Sutcliffe efficiency coefficient up to 0.94 and 0.92 for surface runoff, and 0.89 and 0.88 for sediment yield, respectively, for NW and SW watersheds. Some model parameters required significant adjustments, e.g., Ksat at 78.5% and 49.1%, initial soil moisture at 5.5% and 2.5%, soil cohesion at 24.1% and 4.6%, and aggregate stability at 21.4% and 4.6%, respectively for NW and SW watersheds. During the validation period (2020–2021), the model exhibited constraints in adequately representing the hydrosedimentological processes, with only a few rainfall events showing accurate results. Thus, for the utilization of a validated LISEM in future climate scenarios, the model still requires thorough scrutiny of the equations governing hydrology and erosion processes, along with continued monitoring and further model parameterization.
期刊介绍:
International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management.
A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made.
The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.