{"title":"Angle-dependent seismic attenuation based gas-bearing detection of sandstone river channel reservoir in western Sichuan Basin","authors":"Zhentao Sun, Xingyao Yin, Yongzhen Ji","doi":"10.1093/jge/gxae042","DOIUrl":null,"url":null,"abstract":"\n The shallow river channel sandstone reservoirs of Jurassic in western Sichuan Basin are rich in natural gas. Gas-bearing sweet-spot has a ‘sausage like’ distribution feature, with complex gas water distribution. Analysis of seismic data at different angles show that gas-bearing reservoir formation has different seismic attenuation features from the water-bearing formations, and such differences have a certain correlation with gas production. Accordingly, a gas-bearing detection technology based on angle-dependent seismic attenuation feature is proposed. Firstly, matching pursuit time-frequency analysis method is used to extract high-resolution time-frequency spectrum from seismic data at different incidence angles. Then, the angle-dependent seismic attenuation attribute is estimated using the extracted time-frequency spectrum. Finally, the attribute is combined with the inverted impedance for gas-bearing detection. With the advantages of lower uncertainty and less affected by reservoir porosity, the application results of developed method have high coincidence rate with the drilled wells, and the drilling wells deployed based on the detection results have achieved high production.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"36 3","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The shallow river channel sandstone reservoirs of Jurassic in western Sichuan Basin are rich in natural gas. Gas-bearing sweet-spot has a ‘sausage like’ distribution feature, with complex gas water distribution. Analysis of seismic data at different angles show that gas-bearing reservoir formation has different seismic attenuation features from the water-bearing formations, and such differences have a certain correlation with gas production. Accordingly, a gas-bearing detection technology based on angle-dependent seismic attenuation feature is proposed. Firstly, matching pursuit time-frequency analysis method is used to extract high-resolution time-frequency spectrum from seismic data at different incidence angles. Then, the angle-dependent seismic attenuation attribute is estimated using the extracted time-frequency spectrum. Finally, the attribute is combined with the inverted impedance for gas-bearing detection. With the advantages of lower uncertainty and less affected by reservoir porosity, the application results of developed method have high coincidence rate with the drilled wells, and the drilling wells deployed based on the detection results have achieved high production.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.