{"title":"EmoAsst: emotion recognition assistant via text-guided transfer learning on pre-trained visual and acoustic models","authors":"Minxiao Wang, Ning Yang","doi":"10.3389/fcomp.2024.1304687","DOIUrl":null,"url":null,"abstract":"Children diagnosed with Autism Spectrum Disorder (ASD) often struggle to grasp social conventions and promptly recognize others' emotions. Recent advancements in the application of deep learning (DL) to emotion recognition are solidifying the role of AI-powered assistive technology in supporting autistic children. However, the cost of collecting and annotating large-scale high-quality human emotion data and the phenomenon of unbalanced performance on different modalities of data challenge DL-based emotion recognition. In response to these challenges, this paper explores transfer learning, wherein large pre-trained models like Contrastive Language-Image Pre-training (CLIP) and wav2vec 2.0 are fine-tuned to improve audio- and video-based emotion recognition with text- based guidance. In this work, we propose the EmoAsst framework, which includes a visual fusion module and emotion prompt fine-tuning for CLIP, in addition to leveraging CLIP's text encoder and supervised contrastive learning for audio-based emotion recognition on the wav2vec 2.0 model. In addition, a joint few-shot emotion classifier enhances the accuracy and offers great adaptability for real-world applications. The evaluation results on the MELD dataset highlight the outstanding performance of our methods, surpassing the majority of existing video and audio-based approaches. Notably, our research demonstrates the promising potential of the proposed text-based guidance techniques for improving video and audio-based Emotion Recognition and Classification (ERC).","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"6 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcomp.2024.1304687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Children diagnosed with Autism Spectrum Disorder (ASD) often struggle to grasp social conventions and promptly recognize others' emotions. Recent advancements in the application of deep learning (DL) to emotion recognition are solidifying the role of AI-powered assistive technology in supporting autistic children. However, the cost of collecting and annotating large-scale high-quality human emotion data and the phenomenon of unbalanced performance on different modalities of data challenge DL-based emotion recognition. In response to these challenges, this paper explores transfer learning, wherein large pre-trained models like Contrastive Language-Image Pre-training (CLIP) and wav2vec 2.0 are fine-tuned to improve audio- and video-based emotion recognition with text- based guidance. In this work, we propose the EmoAsst framework, which includes a visual fusion module and emotion prompt fine-tuning for CLIP, in addition to leveraging CLIP's text encoder and supervised contrastive learning for audio-based emotion recognition on the wav2vec 2.0 model. In addition, a joint few-shot emotion classifier enhances the accuracy and offers great adaptability for real-world applications. The evaluation results on the MELD dataset highlight the outstanding performance of our methods, surpassing the majority of existing video and audio-based approaches. Notably, our research demonstrates the promising potential of the proposed text-based guidance techniques for improving video and audio-based Emotion Recognition and Classification (ERC).
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.