Measure induced Hankel and Toeplitz type operators on weighted Dirichlet spaces

N. Zorboska
{"title":"Measure induced Hankel and Toeplitz type operators on weighted Dirichlet spaces","authors":"N. Zorboska","doi":"10.1090/bproc/215","DOIUrl":null,"url":null,"abstract":"<p>For a complex Borel measure <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\">\n <mml:semantics>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on the open unit disk, and for a weighted Dirichlet space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H Subscript s\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}_s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than s greater-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0>s>1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we characterize the boundedness of the measure induced Hankel type operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Subscript mu comma s Baseline colon script upper H Subscript s Baseline right-arrow script upper H Subscript s Baseline overbar\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>s</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>:</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mover>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:msub>\n <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H_{\\mu ,s}: \\mathcal {H}_s \\to \\overline {\\mathcal {H}_s}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, extending the results of Xiao [Bull. Austral. Math. Soc. 62 (2000), pp. 135–140] for the classical Hardy space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H squared equals script upper H 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^2=\\mathcal {H}_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and of Arcozzi, Rochberg, Sawyer, and Wick [J. Lond. Math. Soc. (2) 83 (2011), pp. 1–18] for the classical Dirichlet space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D equals script upper H 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {D}= \\mathcal {H}_0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our approach relies on some recent results about weak products of complete Nevanlinna-Pick reproducing kernel Hilbert spaces. We also include some related results on Hankel measures, Carleson measures, and Toeplitz type operators on weighted Dirichlet spaces <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H Subscript s\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}_s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than s greater-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0>s>1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a complex Borel measure μ \mu on the open unit disk, and for a weighted Dirichlet space H s \mathcal {H}_s with 0 > s > 1 0>s>1 , we characterize the boundedness of the measure induced Hankel type operator H μ , s : H s H s ¯ H_{\mu ,s}: \mathcal {H}_s \to \overline {\mathcal {H}_s} , extending the results of Xiao [Bull. Austral. Math. Soc. 62 (2000), pp. 135–140] for the classical Hardy space H 2 = H 1 H^2=\mathcal {H}_1 , and of Arcozzi, Rochberg, Sawyer, and Wick [J. Lond. Math. Soc. (2) 83 (2011), pp. 1–18] for the classical Dirichlet space D = H 0 \mathcal {D}= \mathcal {H}_0 . Our approach relies on some recent results about weak products of complete Nevanlinna-Pick reproducing kernel Hilbert spaces. We also include some related results on Hankel measures, Carleson measures, and Toeplitz type operators on weighted Dirichlet spaces H s \mathcal {H}_s , 0 > s > 1 0>s>1 .

加权德里赫利空间上的测度诱导汉克尔和托普利兹型算子
对于开放单位盘上的复玻雷尔度量 μ \mu,以及加权德里赫特空间 H s \mathcal {H}_s ,0 > s > 1 0>s>1 ,我们描述了度量诱导的汉克尔型算子 H μ , s : H s → H s ¯ H_{\mu ,s} 的有界性:\mathcal {H}_s \to \overline {\mathcal {H}_s}. ,以及 Arcozzi、Rochberg、Sawyer 和 Wick [J. Lond. Math. Soc. (2) 83 (2011), pp.我们的方法依赖于最近关于完整的 Nevanlinna-Pick 重现核希尔伯特空间的弱乘积的一些结果。我们还包括一些关于加权德里赫特空间 H s \mathathcal {H}_s , 0 > s > 1 0 >s>1 上的汉克尔量、卡莱森量和托普利兹型算子的相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信